# Journal of Advances in Applied Mathematics

### Sharp Inequalities Involving Neuman Means of the Second Kind with Applications

Download PDF (496.6 KB) PP. 139 - 148 Pub. Date: July 12, 2016

### Author(s)

**Lin-Chang Shen**

Huzhou Shanlian Adult School,Huzhou, Zhejiang,China**Yue-Ying Yang**^{*}

Mechanic Electronic and Automobile Egineering College, Huzhou Vocational & Technical College, Huzhou, Zhejiang,China**Wei-Mao Qian**

School of Distance Education, Huzhou Broadcast and TV University, Huzhou, Zhejiang,China

### Abstract

### Keywords

### References

[1] E. Neuman, and J. Sándor, "On the Schwab-Borchardt mean", Math. Pann., vol.14, no.2, pp.253-266, 2003.

[2] E. Neuman, and J. Sándor, "On the Schwab-Borchardt mean II", Math. Pann., vol.17, no.1, pp.49-59, 2006.

[3] Z.-H.Yang, "Three families of two-parameter means constructed by trigonometric functions", J. Inequal. Appl., 541, 27 pages(2013).

[4] E. Neuman, "On a new bivariate mean", Aequat. Math., vol.88, no.3, pp.277-289, 2014.

[5] E. Neuman, "On some means derived from the Schwab-Borchardt mean", J. Math. Inequal., vol.8, pp.1, pp.171-183, 2014.

[6] E. Neuman, "On some means derived from the Schwab-Borchardt mean II", J. Math. Inequal.,vol.8, pp.2, 361-370, 2014.

[7] Y.-M. Chu, W.-M. Qian, L.-M. Wu, and X.-H. Zhang, "Optimal bounds for the first and second Seiffert means in terms of geometric, arithmetic and contraharmonic means", J. Inequal. Appl.,44(2015).

[8] Y.-M. Chu, and W.-M. Qian, "Refinements of bounds for Neuman means, Abstr". Appl. Anal., Article ID 254132, 8 pages (2004).

[9] W.-M. Qian, and Y.-M. Chu, "Optimal bounds for Neuman means in terms of geometric, arithmetic and quadratic means", J. Inequal. Appl., 2014:175 (2014).

[10] W.-M. Qian, Z.-H Shao and Y.-M. Chu, "Sharp Inequalities Involving Neuman Means of the Second Kind", J. Math. Inequal., vol.9, no.2 pp.531-540, 2015.

[11] Y. Zhang, Y.-M. Chu and Y.-L. Jiang, "Sharp geometric mean bounds for Neumam means", Abstr. Appl. Anal., Article ID949818, 6 pages, (2014).

[12] Z.-J.Guo, Y. zhang, Y.- M. Chu and Y.-Q. Song, "Sharp bounds for Neuman means in terms of geometric, arithmetic and quadratic means", Available online at http:// arxiv. org/abs/1405.4384.

[13] Y.-Y. Yang, and W.-M. Qian, "The optimal convex combination bounds of harmonic, arithmetic and contraharmonic means for the Neuman means", Int. Math. Forum, vol.9, no.27, pp.1295- 1307, 2014.

[14] Z.-Y. He, Y.-M. Chu and M.-K. Wang, "Optimal bounds for Neuman means in terms of harmonic and contraharmonic means", J. Appl. Math., Article ID 807623, 4 pages(2013).

[15] G. D. Anderson, M. K. Vamanamurthy and M. K. Vuorinen, Conformal Invariants, Inequalities, and Quasiconformal Maps, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, New York, NY, USA, 1997.

[16] S. Simic and M. Vuorinen, "Landen inequalities for zero-balanced hypergeometric function", Abstr. Appl. Anal., Article ID 932061, 11 pages(2012).

[17] S.- B. Chen, Z.-Y. He, Y.-M. Chu, Y.-Q. Song and X.-J. Tao, "Note on certain inequalities for Neuman means", J. Inequal. Appl., 2014:370(2014).