# Journal of Advances in Applied Mathematics

### A Symbolic Algorithm for the Computation of Periodic Orbits in Non–Linear Differential Systems

Download PDF (989.1 KB) PP. 160 - 174 Pub. Date: July 12, 2016

### Author(s)

**Juan F. Navarro**^{*}

Department of Applied Mathematics, University of Alicante, 03009 San Vicente del Raspeig, Alicante, Spain

### Abstract

### Keywords

### References

[1] Shayak Bhattacharjee, J. K. Bhattacharjee, “Lindstedt Poincaré technique applied to molecular potentials”, J. Math. Chem., vol. 50, pp. 1398–1410, 2012.

[2] A. Buonomo, “The periodic solution of van der Pol equation”, SIAM J. Appl. Math., vol. 59, no. 1, pp.156–171, 1998.

[3] S. H. Chen, Y. K. Cheung, “An elliptic Lindstedt–Poincaré method for certain strongly non–linear oscillators”, Nonlinear Dyn., vol. 12, pp. 199–213, 1997.

[4] A. Dena, M. Rodríguez, S. Serrano, R. Barrio, “High–Precision Continuation of Periodic Orbits”, Abstract and Applied Analysis, 12 pages, 2012.

[5] D. Dutta, J. K. Bhattacharjee, Lotka–Volterra dynamics under periodic influence, 2006. [Online]. Available: arXiv:nlin.CD/0610044v1.

[6] J. H. He, “Modified Lindstedt–Poincaré methods for some non–linear oscillations. Part I: expansion of constant”, J. Non–linear Mech., vol. 37, pp. 309–314, 2002.

[7] J. Henrard, “A survey of Poisson series processors”, Celest. Mech., vol. 45, pp.45–253, 1989.

[8] H. Hu & Z. G. Xiong, “Comparison of two Lindstedt–Poincaré–type perturbation methods”, J. Sound Vibr., vol. 278, pp. 437–444, 2004.

[9] Zhouhong Li, “Four positive almost periodic solutions to two species parasitical model with impulsive effects and harvesting terms”, WSEAS Transactions on Mathematics, vol. 13, pp. 932–940, 2014.

[10] Chunfang Miao, Yunquan Ke, “Positive Periodic Solutions of a Generalized Gilpin-Ayala Competitive System with Time Delays”, WSEAS Transactions on Mathematics, vol. 3, no. 12, pp. 277–285, 2013.

[11] J. F. Navarro, “On the implementation of the Poincaré–Lindstedt technique”, Appl. Math. Comput., vol. 195, pp. 183–189, 2008.

[12] J. F. Navarro, “Computation of periodic solutions in perturbed second–order ODEs”, Appl. Math. Comput., vol. 202, pp. 171–177, 2008.

[13] J. F. Navarro, “The asymptotic expansion method via symbolic computation”, Journal of Applied Mathematics, 24 pages, 2012.

[14] Liyan Pang, Lijun Xu, Tianwei Zhang, “Two Positive Almost Periodic Solutions of Harvesting Predator-Prey Model with Holling III Type Functional Response and Time Delays”, WSEAS Transactions on Mathematics, vol. 13, pp. 895–906, 2014.

[15] Yongzhen Pei, Haiyong Wang, “Rich dynamical behaviors of a predator-prey system with state feedback control and a general functional responses”, WSEAS Transactions on Mathematics, vol. 11, no. 10, pp. 387–397, 2011.

[16] T. Penati, S. Flach, “Tail resonances of Fermi–Pasta–Ulam q–breathers ans their impact on the pathway to equipartition”, Chaos, vol. 17, no. 2, pp. 023102–023116, 2007.

[17] H. Poincaré. Les Methodes Nouvelles de la Mécanique Celeste I. Gauthiers-Villars, 1892.

[18] Camelia Pop, Anania Aron, “Some New Remarks about Lotka–Volterra System”, WSEAS Transactions on Mathematics, vol. 8, no. 8, pp. 403–413, 2009.

[19] J. I. Ramos, “On Lindstedt–Poincaré techniques for the quintic Duffing equation”, Appl. Math. Comput., vol. 193, pp. 303–310, 2007.

[20] F. San–Juan, A. Abad, “Algebraic and Symbolic Manipulation of Poisson Series”, J. Symbolic Computation, vol. 32, pp. 565–572, 2001.

[21] R. Scuflaire, “Stability of axial orbits in analytic galactic potentials”, Celest. Mech., vol. 61, pp. 261–285, 1995.

[22] R. Scuflaire, “Periodic orbits in analytical planar galactic potentials”, Celest. Mech., vol. 71, pp. 203–228, 1991.

[23] D. Venu Gopala Rao and P. Sri Hari Krishna, “An Extensive Study of Approximating the Periodic Solutions of the Prey–Predator System”, Applied Mathematical Sciences, vol. 4, no. 58, pp. 2851–2864, 2010.

[24] D. Viswanath, “The Lindstedt–Poincaré technique as an algorithm for computing periodic orbits”, SIAM Rev, vol. 43 D, pp. 478–495, 2001.