Journal of Advances in Applied Mathematics
Cohomological Vertex Operators
Download PDF (829.8 KB) PP. 71 - 88 Pub. Date: March 23, 2017
Author(s)
- ANDRÉS VIÑA*
Departamento de Física, Universidad de Oviedo, Avda Calvo Sotelo, 33007 Oviedo, Spain
Abstract
Keywords
References
[1] Aspinwall, P. S.: D-branes on Calabi-Yau manifolds. In Progress in String Theory. Pages 1-152. World Sci. Publ. (2005).
[2] Aspinwall, P. S. et al.: Dirichlet branes and mirror symmetry. Clay mathematics monographs vol 4. Amer. Math. Soc. (2009).
[3] Baum, P.: K-homology and D-branes. In Superstrings, Geometry, Topology, and C-algebras. Vol 81, Proc. Sympos. Pure Math. 81-94. AMS (2009).
[4] Bondal A., Kapranov M.: Representable functors, Serre functors, and mutations, Izv. Akad. Nauk SSSR, Ser.Mat., 53, 1183-1205 (1989); English transl. in Math. USSR Izv., 35, 519-541 (1990).
[5] Fulton, W.: Intersection theory. Springer (1998).
[6] Eisenbud, E.: Commutative algebra with a view toward algebraic geometry. Springer-Verlag (1995).
[7] Gelfand, S. I., Manin, Y. I.: Methods of homological algebra. Springer (2003).
[8] Griffiths, P., Harris, J.: Principles of algebraic geometry. John Wiley (1994).
[9] Hartshorne R.: Algebraic geometry. Springer-Verlag (1983).
[10] Iversen, B.: Cohomology of sheaves. Springer (1986).
[11] Jia, B.: D-branes and K-homology. arXiv:1306.0535 [math. KT].
[12] Katz, S., Sharpe, E.: D-branes, open string vertex operators, and Ext groups. Adv. Theor. Math. Phys. 6, 979-1030 (2003).
[13] Kashiwara, M., Schapira, P.: Sheaves on manifolds. Springer-Verlag (2002).
[14] Mac Lane, S.: Homology. Springer-Verlag (1975).
[15] Mitchell, B.: Theory of categories. Academic Press. (1965).
[16] Moore, G. W.: The impact of D-branes in Mathematics. (2014) (In www.physics.rutgers.edu/~gmoore).
[17] Reis, R.M.G., Szabo, R.J.: Geometric K-homology of flat D-branes. Commun. Math. Phys. 266, 71-122 (2006).
[18] Serre, J. P.: Faisceaux algébriques cohérents. Annals of Math. 61, 197-278 (1955).
[19] Weibel, Ch. A.: An introduction to homological algebra. Cambridge U.P. (1997).
[20] Witten, E.: Chern-Simmons gauge theory as a string theory. In H.Hofer et alt. editors The Floer memorial volume. 637-678. Birkhäuser (1995).
[21] Witten, E.: Mirror manifolds and topological field theory. In Mirror Symmetry I. Edit S.-T. Yau. Pages 121-157. AMS (1998).