Isaac Scientific Publishing

Journal of Advances in Applied Mathematics

Cohomological Vertex Operators

Download PDF (829.8 KB) PP. 71 - 88 Pub. Date: March 23, 2017

DOI: 10.22606/jaam.2017.22001


    Departamento de Física, Universidad de Oviedo, Avda Calvo Sotelo, 33007 Oviedo, Spain


Given a Calabi-Yau manifold and considering the B-branes on it as objects in the derived category of coherent sheaves, we identify the vertex operators for strings between two branes with elements of the cohomology groups of Ext sheaves. We define the correlation functions for these general vertex operators. Strings stretching between two coherent sheaves are studied as homological extensions of the corresponding branes. In this context, we relate strings between different pairs of branes when there are maps between these pairs. We also interpret some strings with ghost number k as obstructions for lifts or extensions of strings with ghost number k − 1.


B-branes, vertex operators, derived categories of sheaves


[1] Aspinwall, P. S.: D-branes on Calabi-Yau manifolds. In Progress in String Theory. Pages 1-152. World Sci. Publ. (2005).

[2] Aspinwall, P. S. et al.: Dirichlet branes and mirror symmetry. Clay mathematics monographs vol 4. Amer. Math. Soc. (2009).

[3] Baum, P.: K-homology and D-branes. In Superstrings, Geometry, Topology, and C-algebras. Vol 81, Proc. Sympos. Pure Math. 81-94. AMS (2009).

[4] Bondal A., Kapranov M.: Representable functors, Serre functors, and mutations, Izv. Akad. Nauk SSSR, Ser.Mat., 53, 1183-1205 (1989); English transl. in Math. USSR Izv., 35, 519-541 (1990).

[5] Fulton, W.: Intersection theory. Springer (1998).

[6] Eisenbud, E.: Commutative algebra with a view toward algebraic geometry. Springer-Verlag (1995).

[7] Gelfand, S. I., Manin, Y. I.: Methods of homological algebra. Springer (2003).

[8] Griffiths, P., Harris, J.: Principles of algebraic geometry. John Wiley (1994).

[9] Hartshorne R.: Algebraic geometry. Springer-Verlag (1983).

[10] Iversen, B.: Cohomology of sheaves. Springer (1986).

[11] Jia, B.: D-branes and K-homology. arXiv:1306.0535 [math. KT].

[12] Katz, S., Sharpe, E.: D-branes, open string vertex operators, and Ext groups. Adv. Theor. Math. Phys. 6, 979-1030 (2003).

[13] Kashiwara, M., Schapira, P.: Sheaves on manifolds. Springer-Verlag (2002).

[14] Mac Lane, S.: Homology. Springer-Verlag (1975).

[15] Mitchell, B.: Theory of categories. Academic Press. (1965).

[16] Moore, G. W.: The impact of D-branes in Mathematics. (2014) (In

[17] Reis, R.M.G., Szabo, R.J.: Geometric K-homology of flat D-branes. Commun. Math. Phys. 266, 71-122 (2006).

[18] Serre, J. P.: Faisceaux algébriques cohérents. Annals of Math. 61, 197-278 (1955).

[19] Weibel, Ch. A.: An introduction to homological algebra. Cambridge U.P. (1997).

[20] Witten, E.: Chern-Simmons gauge theory as a string theory. In H.Hofer et alt. editors The Floer memorial volume. 637-678. Birkhäuser (1995).

[21] Witten, E.: Mirror manifolds and topological field theory. In Mirror Symmetry I. Edit S.-T. Yau. Pages 121-157. AMS (1998).