# Journal of Advances in Applied Mathematics

### Invariant Unstable Manifolds of Nonautonomous Systems on Time Scales

Download PDF (264.9 KB) PP. 37 - 44 Pub. Date: April 1, 2019

### Author(s)

**Le Huy Tien**^{1}, Nguyen Minh Man^{2}

^{1}Department of Mathematics, Mechanics and Informatics, Vietnam National University at Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam**Le Duc Nhien**^{1*}

^{2}Faculty of Basic Sciences, Ha Noi University of Mining and Geology, 18 Pho Vien, Ha Noi, Viet Nam

### Abstract

### Keywords

### References

[1] N. V. Minh and J. Wu, “Invariant manifolds of partial functional differential equations,” J. Differential Equations, vol. 198, no. 2, pp. 381–421, 2004.

[2] W. A. Coppel, “Stability and Asymptotic Behavior of Differential Equations,” Heath Math. Monogr., Heath & Co., Boston, 1965.

[3] W. A. Coppel, “Dichotomies in Stability Theory,” Lecture Notes in Math., Springer-Verlag, vol. 629, 1978.

[4] K. J. Palmer, “Exponential Dichotomies and Fredholm,” Proceedings of the American Mathematical Society, vol. 104, no. 1, pp. 149–156, 1988.

[5] K. J. Palmer, “Exponential Dichotomies and Transversal Homoclinic Points,” J. Differential Equations, vol. 55, no. 2, pp. 225–256, 1984.

[6] K. J. Palmer, “A perturbation theorem for exponential dichotomies,” Proc. Roy. Soc. Edinburgh Sect. A, vol. 106, no. 1–2, pp. 25–37, 1987.

[7] K. J. Palmer, “Exponential dichotomies for almost periodic equations,” Proc. Amer. Math. Soc., vol. 101, no. 2, pp. 293–298, 1987.

[8] K. J. Palmer, “Shadowing in Dynamical Systems: Theory and Applications,” Kluwer Academic Publishers, Dordrecht, Boston, 2000.

[9] R. J. Sacker and G. R. Sell, “A spectral theory for linear differential systems,” J. Differential Equations, vol. 27, no. 3, pp. 320–358, 1978.

[10] R. J. Sacker and G. R. Sell, “Dichotomies for linear evolutionary equations in Banach spaces,” J. Differential Equations, vol. 113, no. 1, pp. 17–67, 1994.

[11] N. Fenichel, “Geometric singular perturbation theory for ordinary differential equations,” J. Differential Equations, vol. 31, no. 1, pp. 53–98, 1979.

[12] N. Fenichel, “Persistence and smoothness of invariant manifolds for flows,” Indiana Univ. Math. J., vol. 21, pp. 193–226, 1971.

[13] W. Beyn, “On well-posed problems for connecting orbits in dynamical systems,” Contemp. Math., vol. 172, pp. 131–168, 1994.

[14] W. J. Beyn, “The numerical computation of connecting orbits in dynamical systems,” IMA J. Numer. Anal., vol. 10, pp. 379–405, 1990.

[15] W. J. Beyn and J. Lorenz, “Stability of traveling waves: Dichotomies and eigenvalue conditions on finite intervals,” Numer. Funct. Anal. Optim., vol. 20, pp. 201–244, 1999.

[16] U. Ascher, R. M. Mattheij and R. D. Russell, “Solution of Boundary Value Problems for ODEs,” Prentice Hall, Englewood Cliffs, NJ, 1988.

[17] H. W. Broer, H. M. Osinga and G. Vegter, “Algorithms for computing normally hyperbolic invariant manifolds,” Z. Angew. Math. Phys., vol. 48, pp. 480–524, 1997.

[18] L. Dieci and J. Lorenz, “Computation of invariant tori by the method of characteristics,” SIAM J. Numer. Anal., vol. 32, pp. 1436–1474, 1995.

[19] L. Barreira, D. Dragicevic and C. Valls, “Fredholm operators and nonuniform exponential dichotomies,” Chaos, Solitons and Fractals, vol. 85, pp. 120–127, 2016.

[20] L. Barreira, D. Dragicevic and C. Valls, “Nonuniform exponential dichotomies and Fredholm operators for flows,” Aequat. Math., vol. 91, no. 2, pp.301–316, 2017.

[21] S. Hilger, “Analysis on measure chains - a unified approach to continuous and discrete calculus,” Results Math., vol. 18, pp. 18–56, 1990.

[22] J. Zhang, M. Fan and H. Zhu, “Existence and roughness of exponential dichotomies of linear dynamic equations on time scales,” Comp. and Math. with Appl., vol. 59, pp. 2658–2675, 2009.

[23] J. Zhang, Y. Song and Z. Zhao, “General exponential dichotomies on time scales and parameter dependence of roughness,” Adva. Diff. Equations., 2013.

[24] L. Yang, J. Zhang, X. Chang and Z. Liu, “Exponential dichotomy on time scales and admissibility of the pair (Cb rd(T+,X),Lp(T+,X)),” Adv. Diff. Equations, 2015.

[25] M. Bohner and A. Peterson, “Dynamic equations on time scales: an introduction with applications,” Birkhäuser Boston, Inc., 2001.

[26] M. Bohner and A. Peterson, “Advances in dynamic equations on time scales,” Birkhäuser Boston, Inc., Boston, 2003.

[27] C. Pðtzsche, “Exponential dichotomies of linear dynamic equations on measure chains under slowly varying coefficients,” J. Anal. Math. Appl., vol 289, pp. 317–335, 2004.

[28] J. Zhang, M. Fan and H. Zhu, “Necessary and sufficient criteria for the existence of exponential dichotomy on time scales,” Comp. and Math. with Appl., vol. 60, pp. 2387–2398, 2010.

[29] E. R. Kaufmann and Y. N. Raffoul, “Periodic solutions for a neutral nonlinear dynamical equations on a time scales,” J. Math. Anal. Appl., vol. 319, no. 1, pp. 315–325, 2006.

[30] R. Martin, “Nonlinear Operators and Differential Equations in Banach Spaces,” Wiley Interscience, New York, 1976.

[31] Z. Nitecki, “An introduction to the orbit structure of diffeomorphisms,” MIT Press, Cambridge, MA, 1971.

[32] P. Duarte and S. Klein, “Lyapunov Exponents of Linear Cocycles,” Atlantis Press, 2016.