Journal of Advances in Applied Mathematics
New Generalization of Length Biased Exponential Distribution with Applications
Download PDF (255.2 KB) PP. 82 - 88 Pub. Date: April 1, 2019
Author(s)
- Obubu Maxwell*
Department of Statistics, Nnamdi Azikiwe University, Awka, Nigeria - Samuel Oluwafemi Oyamakin
Department of Statistics, University of Ibadan, Ibadan, Nigeria - Angela Unna Chukwu
Department of Statistics, University of Ibadan, Ibadan, Nigeria - Yusuf Olufemi Olusola
Department of Statistics, University of Ilorin, Ilorin, Nigeria - Adeleke Akinrinade Kayode
Department of Statistics, University of Ilorin, Ilorin, Nigeria
Abstract
Keywords
References
[1] Abouammoh, A. M. & A. M. Alshingiti (2009). Reliability estimation of generalized inverted exponential distribution. Journal of Statistical Computation and Simulation 79 (11), 1301-1315.
[2] Maxwell O, Friday AI, Chukwudike NC, et al. (2019). A theoretical analysis of the odd generalized exponentiated inverse Lomax distribution. Biom Biostat Int J. 2019; 8(1): 17-22. DOI: 10.15406/ bbij.2019.08.00264.
[3] Ristic, M..M., Kundu, D. (2015). Marshall-Olkin generalized exponential distribution, Metron 73(3), 317-333.
[4] Aq, M.A.u., et al. Journal of King Saud University – Science (2017), http://dx.doi.org/10.1016/ j.jksus.2017.09.06
[5] Gupta, R.D., Kundu, D. (1999). Theory & methods: generalized exponential distributions. Australian & New Zealand J. Stat. 41 (2), 173–188
[6] Gupta, R.D., Kundu, D. (2001). Exponentiated exponential family: an alternative to gamma and Weibull distributions. Biometrical J. 43 (1), 117–130
[7] Iqbal, Z., Hasnain, S.A., Salman, M., Ahmad, M., Hamedani, G. (2014). Generalized exponentiated moment exponential distribution. Pakistan J. Stat.
[8] Abu-Youssef, S., Mohammed, B., Sief, M. (2015). An extended exponentiated exponential distribution and its properties. Int. J. Comput. Appl. 121 (5)
[9] Pogány, T.K., Saboor, A., Provost, S. (2015). The Marshall-Olkin exponential Weibull distribution. Hacettepe J. Math. Stat. 44, 1579–1594
[10] Hasnain, S.A., Iqbal, Z., Ahmad, M. (2015). On exponentiated moment exponential distribution. Pak. J. Statist. 31 (2), 267–280.
[11] Dara, S.T., Ahmad, M. (2012). Recent Advances in Moment Distribution and Their Hazard Rates. Lap Lambert Academic Publishing GmbH KG.
[12] Cordeiro, G. M., Ortega, E. M. M., and Cunha, D. C. C. (2013). The exponentiated generalized class of distributions. Journal of Data Science, 11:1–27.
[13] Thiago A. N. de Andrade, Marcelo Bourguignon, Gauss M. Cordeiro. (2016). The exponentiated generalized extended exponential distribution. Journal of Data Science, 14: 393-414
[14] B. Abdul-Monoem & H.F. Abdel-Hameed (2019). On Exponentiated Lomax Distribution. International Journal of Mathematical Archive. 3(5):1-7.
[15] M. Pal, M.M. Ali, & J.Woo. (2014). Exponentiated Weibull Distribution. Statistica, anno LXVI, n.2.
[16] A. Flaih, H. Elsalloukh, E. Mendi, M. Milanova. (2012).The exponentiated inverted Weibull distribution. Appl. Math. Inf. Sci, 6 (2):167-171
[17] Merovci, F., Khaleel, M.A., Ibrahim, N.A., & Shitan, M. (2016). The beta type X distribution: properties with applications. SpringerPlus, 5, 697. Doi:10.1186/s40064-016-2271-9
[18] Obubu Maxwell, Samuel Oluwafemi Oyamakin, Eghwerido Joseph Th. The Gompertz Length Biased Exponential Distribution and its application to Uncensored Data. Curr Tre Biosta & Biometr 1(3) -2018. CTBB.MS.ID.000111.
[19] Maxwell O, Chukwudike NC, Bright OC. Modeling lifetime data with the odd generalized exponentiated inverse Lomax distribution. Biom Biostat Int J. 2019; 8(2): 39-42. DOI: 10.15406/bbij.2019.08.00268.
[20] Morais, A. L., and Barreto-Souza, W. (2011). A compound class of Weibull and power series distributions. Computational Statistics and Data Analysis 55(3): 1410-1425.