Isaac Scientific Publishing

Journal of Advances in Applied Mathematics

New Generalization of Length Biased Exponential Distribution with Applications

Download PDF (255.2 KB) PP. 82 - 88 Pub. Date: April 1, 2019

DOI: 10.22606/jaam.2019.42006

Author(s)

  • Obubu Maxwell*
    Department of Statistics, Nnamdi Azikiwe University, Awka, Nigeria
  • Samuel Oluwafemi Oyamakin
    Department of Statistics, University of Ibadan, Ibadan, Nigeria
  • Angela Unna Chukwu
    Department of Statistics, University of Ibadan, Ibadan, Nigeria
  • Yusuf Olufemi Olusola
    Department of Statistics, University of Ilorin, Ilorin, Nigeria
  • Adeleke Akinrinade Kayode
    Department of Statistics, University of Ilorin, Ilorin, Nigeria

Abstract

In this paper, a compound continuous distribution (i.e. Exponentiated length biased exponential (E-LBE) distribution) is given. Also, the statistical properties of the proposed distribution are examined, and the parameters are obtained by maximum likelihood estimation method. The flexibility, adequacy, and superiority of the proposed model were investigated by means of applications to dataset. The result indicates that the E-LBE distribution outperformed the competing distributions considered.

Keywords

Exponential distribution, length biased, exponential generalized family of distribution, maximum likelihood estimation, hazard functions, survival function, carbon fibre dataset, aircraft windshield dataset.

References

[1] Abouammoh, A. M. & A. M. Alshingiti (2009). Reliability estimation of generalized inverted exponential distribution. Journal of Statistical Computation and Simulation 79 (11), 1301-1315.

[2] Maxwell O, Friday AI, Chukwudike NC, et al. (2019). A theoretical analysis of the odd generalized exponentiated inverse Lomax distribution. Biom Biostat Int J. 2019; 8(1): 17-22. DOI: 10.15406/ bbij.2019.08.00264.

[3] Ristic, M..M., Kundu, D. (2015). Marshall-Olkin generalized exponential distribution, Metron 73(3), 317-333.

[4] Aq, M.A.u., et al. Journal of King Saud University – Science (2017), http://dx.doi.org/10.1016/ j.jksus.2017.09.06

[5] Gupta, R.D., Kundu, D. (1999). Theory & methods: generalized exponential distributions. Australian & New Zealand J. Stat. 41 (2), 173–188

[6] Gupta, R.D., Kundu, D. (2001). Exponentiated exponential family: an alternative to gamma and Weibull distributions. Biometrical J. 43 (1), 117–130

[7] Iqbal, Z., Hasnain, S.A., Salman, M., Ahmad, M., Hamedani, G. (2014). Generalized exponentiated moment exponential distribution. Pakistan J. Stat.

[8] Abu-Youssef, S., Mohammed, B., Sief, M. (2015). An extended exponentiated exponential distribution and its properties. Int. J. Comput. Appl. 121 (5)

[9] Pogány, T.K., Saboor, A., Provost, S. (2015). The Marshall-Olkin exponential Weibull distribution. Hacettepe J. Math. Stat. 44, 1579–1594

[10] Hasnain, S.A., Iqbal, Z., Ahmad, M. (2015). On exponentiated moment exponential distribution. Pak. J. Statist. 31 (2), 267–280.

[11] Dara, S.T., Ahmad, M. (2012). Recent Advances in Moment Distribution and Their Hazard Rates. Lap Lambert Academic Publishing GmbH KG.

[12] Cordeiro, G. M., Ortega, E. M. M., and Cunha, D. C. C. (2013). The exponentiated generalized class of distributions. Journal of Data Science, 11:1–27.

[13] Thiago A. N. de Andrade, Marcelo Bourguignon, Gauss M. Cordeiro. (2016). The exponentiated generalized extended exponential distribution. Journal of Data Science, 14: 393-414

[14] B. Abdul-Monoem & H.F. Abdel-Hameed (2019). On Exponentiated Lomax Distribution. International Journal of Mathematical Archive. 3(5):1-7.

[15] M. Pal, M.M. Ali, & J.Woo. (2014). Exponentiated Weibull Distribution. Statistica, anno LXVI, n.2.

[16] A. Flaih, H. Elsalloukh, E. Mendi, M. Milanova. (2012).The exponentiated inverted Weibull distribution. Appl. Math. Inf. Sci, 6 (2):167-171

[17] Merovci, F., Khaleel, M.A., Ibrahim, N.A., & Shitan, M. (2016). The beta type X distribution: properties with applications. SpringerPlus, 5, 697. Doi:10.1186/s40064-016-2271-9

[18] Obubu Maxwell, Samuel Oluwafemi Oyamakin, Eghwerido Joseph Th. The Gompertz Length Biased Exponential Distribution and its application to Uncensored Data. Curr Tre Biosta & Biometr 1(3) -2018. CTBB.MS.ID.000111.

[19] Maxwell O, Chukwudike NC, Bright OC. Modeling lifetime data with the odd generalized exponentiated inverse Lomax distribution. Biom Biostat Int J. 2019; 8(2): 39-42. DOI: 10.15406/bbij.2019.08.00268.

[20] Morais, A. L., and Barreto-Souza, W. (2011). A compound class of Weibull and power series distributions. Computational Statistics and Data Analysis 55(3): 1410-1425.