# Journal of Advances in Applied Mathematics

### On the Mandelbrot Set for i^2 = ±1 and Imaginary Higgs Fields

Download PDF (2618.3 KB) PP. 27 - 54 Pub. Date: April 1, 2021

### Author(s)

**Jonathan Blackledge**^{*}

Stokes Professor, Science Foundation Ireland; Distinguished Professor, Centre for Advanced Studies, Warsaw University of Technology, Poland; Visiting Professor, Faculty of Arts, Science and Technology, Wrexham Glyndwr University of Wales, UK; Professor Extraordinaire, Faculty of Natural Sciences, University of Western Cape, South Africa; Honorary Professor, School of Electrical and Electronic Engineering, Technological University Dublin, Ireland; Honorary Professor, School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, South Africa.

### Abstract

### Keywords

### References

[1] I. Stewart and D. Tall, “Complex Analysis”, Edition 2, Cambridge University Press, 2018. ISBN: 978-1-43679-3

[2] A. Douady and J. H. Hubbard, “étude Dynamique des Polyn?mes cComplexes”, Société Mathématique de France, 2007. Available at: http://pi.math.cornell.edu/~hubbard/OrsayFrench.pdf

[3] B. Mandelbrot, “The Fractal Geometry of Nature”, W. H. Freeman and Co., 1983. ISBN: 978-0-7167-1186-5

[4] Euclid, “Elements”, (Eds. D. Densmore and T. L. Heath), Green Lion Press, 2002. ISBN: 978-1-888009-19-4

[5] L. Carleson and T. W. Gamelin, “Complex Dynamics”, Springer 1993. ISBN: 978-0-387-97942-7

[6] A. F. Beardon, “Iteration of Rational Functions”, Springer 1991. ISBN: 0-387-95151-2

[7] H. M. Edwards, “Riemann’s Zeta Function”, Academic Press, 1974. ISBN-10: 0-486-41740-9 .

[8] G. T. Bagni, “Infinite Series from History to Mathematics Education”, International Journal for Mathematics Teaching and Learning, 2005. Available at: https://web.archive.org/web/20061229024056/http://www. cimt.plymouth.ac.uk/journal/bagni.pdf

[9] G. Feinberg, G. (1967). “Possibility of Faster-Than-Light Particles”. Physical Review, vol. 159, no. 5, pp. 1089?1105, 1967.

[10] W. Greiner, “Relativistic Quantum Mechanics: Wave Equations” (Edition 3), Springer Verlag, 2000, ISBN: 3-5406-74578.

[11] G. Bernardi, M. Carena and T. Junk, “Higgs bosons: Theory and searches”, Review: Hypothetical particles and Concepts. Particle Data Group, 2007. Available at: https://pdg.lbl.gov/2008/reviews/higgs_s055.pdf

[12] P. W. Higgs, “Broken Symmetries and the Masses of Gauge Bosons”, Physical Review Letters, vol. 13 , no. 16, pp. 508?09, 1964.

[13] G. Aad et al. “Combined Measurement of the Higgs Boson Mass in pp Collisions at p s= 7 and 8 TeV with the ATLAS and CMS Experiments”, Physical Review Letters, 114, 191803, 2015. Available at: https: //journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.191803

[14] J. W. Milnor, “Dynamics in One Complex Variable”, Edition 3, Annals of Mathematics Studies 160, Princeton University Press 2006. Available at: https://arxiv.org/abs/math/9201272

[15] E. Demidov, “The Mandelbrot and Julia sets Anatomy”, A virtual investigation with interactive pictures, 2003. Available at: https://www.ibiblio.org/e-notes/MSet/Contents.htm

[16] M. Michelitsch and O. E. R?ssler, “The ‘Burning Ship’ and Its Quasi-Julia Sets”. In: Computers & Graphics, vol. 16, no. 4, pp. 435-438, 1992.

[17] MATLAB, Mathematical Computing Software, The MathWorks Inc., 2020. Available at: https://uk. mathworks.com/products/matlab.html.

[18] B. C. Berndt, “Ramanujan’s Notebooks”, Ramanujan’s Theory of Divergent Series, Springer, 1985. Available at: https://www.sussex.ac.uk/webteam/gateway/file.php?name=ramanujans-notebooks.pdf&site=454

[19] R. S. Vieira, “An Introduction to the Theory of Tachyons”, Rev. Bras. Ens. Fis. vol. 34, no. 3, pp. 1-17, 2011. Available at https://arxiv.org/pdf/1112.4187.pdf

[20] J. M. Hill and B. J. Cox, “Einstein’s Special Relativity Beyond the Speed of lLight”, Proc. R. Soc. A vol. 468 (2148), pp. 4174?4192, 2012. Available at: https://royalsocietypublishing.org/doi/10.1098/rspa. 2012.0340

[21] J. R. Forshaw and A. G. Smith, “Dynamics and Relativity” Wiley, 2009. ISBN 978-0-470-01460-8

[22] D. McMahon, “Relativity. Demystified” McGraw-Hill, 2006. ISBN 0-07-145545-0

[23] N Boston, “The Proof of Fermat’s Last Theorem”, University of Wisconsin, 2003. Available at: https: //www.math.wisc.edu/~boston/869.pdf

[24] N. Zettili, “Quantum Mechanics: Concepts and Applications”, Edition 2, Wiley, 2009. ISBN: 978-0-470-02678-6

[25] O. Klein, “Quantentheorie und fünfdimensionale Relativit?tstheorie”, Zeitschrift für Physik, vol. 37, no. 12, pp. 895-906, 1926. Available at: https://edition-open-sources.org/media/sources/10/10/sources10chap8. pdf

[26] W. Gordon, “Der Comptoneffekt nach der Schr?dingerschen Theorie”, Zeitschrift für Physik, vol. 40, 117-133, 1926. Available from: https://link.springer.com/article/10.1007%2FBF01390840

[27] S. Weinberg, “The Quantum Theory of Fields”, Cambridge University Press, 2002. ISBN 0-521-55001-7

[28] E. Schr?dinger, “An Undulatory Theory of the Mechanics of Atoms and Molecules” Physical Review. vol. 28 no. 6, pp. 1049?1070, 2026. Available at: https://web.archive.org/web/20081217040121/http: //home.tiscali.nl/physis/HistoricPaper/Schroedinger/Schroedinger1926c.pdf

[29] E. Schr?dinger, “Quantization as an eigenvalue problem,” Annalen der Physik, vol. 489, no. 79, 1926.

[30] J. M. Blackledge and B. Babajanov, “The Fractional Schr?dinger-Klein-Gordon Equation and Intermediate Relativism”, Mathematica Eterna, vol. 3, no. 8, 601-615, 2013. Available from: https://www.longdom.org/ articles/the-fractional-schrodingerkleingordon-equation-and-intermediate-relativism.pdf

[31] P. A. M. Dirac, “The quantum theory of the electron, Part 1,” Proc. R. Soc. (London) A, vol. 117, pp. 610-612, 1928.

[32] P. A. M. Dirac, “The quantum theory of the electron, Part II,” Proc. R. Soc. (London) A, vol. 118, pp. 351-361, 1928.

[33] Telegrapher’s Equation, Wikipedia, 2020. Available at: https://en.wikipedia.org/wiki/Telegrapher% 27s_equations

[34] A. Giusti, “Dispersive Wave Solutions of the Klein-Gordon equation in Cosmology”, Scuola di Scienze Corso di Laurea in Fisica, University of Bologna, 2013, Available at: https://core.ac.uk/download/pdf/ 31155754.pdf

[35] G. Evans, J. M. Blackledge and P. Yardley, “Analytic Solutions to Partial Differential Equations”, Springer, 1999. ISBN: 2540761241

[36] Integral Calculator. Available: https://www.integral-calculator.com/

[37] Fourier Transform, Wikipedia, 2020. Available at: https://en.wikipedia.org/wiki/Fourier_transform; Section 15: Tables of Important Fourier Transforms, Distributions; 15.4 One-Dimensional, Transformation 312.

[38] Green’s Function. Available: https://en.wikipedia.org/wiki/Green%27s_function

[39] M. H. Silvis, “A Quaternion Formulation of the Dirac Equation”, Centre for Theoretical Physics, University of Groningen, 2010. Available at: https://mauritssilvis.nl/publications/silvis-rug10.pdf