# Journal of Advances in Applied Mathematics

### Asymptotical Synchronization of Drive-Response Networks by Sample-Data-Based Event-Triggered Control with Quantization and Cyber-Attacks

Download PDF (1017.3 KB) PP. 55 - 73 Pub. Date: April 1, 2021

### Author(s)

**Ge Bai**^{*}

College of Science, University of Shanghai for Science and Technology, Shanghai 200093, PR China

### Abstract

### Keywords

### References

[1] S. H. Strogatz. Exploring complex networks. Nature, 410(8):268–276, 2001.

[2] R. Mikail and S. Olaf. Complex network measures of brain connectivity: uses and interpretations. Neuroimage, 52(3):1059–1069, 2010.

[3] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. U. Hwang. Complex networks: Structure and dynamics. phys.Rep., 424(4-5):175–308, 2006.

[4] B Shen, Z. D Wang, and X.H Liu. Sampled-data synchronization control of dynamical networks with stochastic sampling. IEEE Trans. Autom. Control, 57(10):2644–2650, 2012.

[5] X. Z Jin and G. H Yang. Adaptive synchronization of a class of uncertain complex networks against network deterioration. IEEE Trans. Circuits Sys.I, Reg. Papers, 58(6):1396–1409, 2011.

[6] Y Dong, J.WChen, and J. G Xian. Event-triggered control for finite-time lag synchronisation of time-delayed complex networks. IET Control Theory Appl., 12(14):1916–1923, 2018.

[7] H.S. Su, X.F Wang, and Z.L Lin. Synchronization of coupled harmonic oscillators in a dynamic proximity network. Automatica, 45(10):2286–2291, 2009.

[8] N. Mahdavi, M.B. Menhaj, J. Kurths, and J.Q. Lu. Fuzzy complex dynamical networks and its synchronization. IEEE Trans. Cybern, 43(2):648–659, 2013.

[9] G.Z. Feng and J.D. Cao. Master-slave synchronization of chaotic systems with a modified impulsive controller. Adv. Differ. Equ., 24:12 pages, 2013.

[10] J. Wu and X. Li. Finite-time adaptive synchronization of drive-rsponse two-layer networks. 2018 IEEE Conference on Decision and Control(CDC), 2019.

[11] G. Al-mahbashi, M.S. Md Noorani, Bakar S.A., and Al sawalha M.M. Robust projective lag synchronization indrive-response dynamical networks viaadaptive control. European Physical Journal Special Topics, 225(1):51–64, 2016.

[12] W.L. Guo, Francis Austin, S.H. Chen, and W. Sun. Pinning synchronization of the complex networks with non-delayed and delayed coupling. Phys. Lett. A, 373(17):1565–1572, 2009.

[13] M.L. Yang, Y.G. Liu, Z.S. You, and P. Sheng. Global synchronization for directed complex networks. Nonlinear Analysis: Real world Applications, 11:2127–2135, 2009.

[14] E. Fridman, U. Shaked, and U. Suplin. Input/output delay approach to robust sampled-data h∞ control. Syst.Control Lett, 54(3):271–282, 2005.

[15] Z. Wang, F. Yang, D. W. C. Ho, and X. Liu. Robust h∞ control for networked systems with random packet losses. IEEE Trans. Syst., Man, Cybern., B, Cybern., 37(4):916–924, 2007.

[16] D. Yue, Q.L. Han, and C. Peng. State feedback controller design of networked control systems. IEEE Trans. Circuits Syst. II: Exp. Briefs, 51(11):640–644, 2004.

[17] Y.G. Niu, T.G. Jia, X.Y. Wang, and F.W. Yang. Output-feedback control design for ncss subject to quantization anddropout. Inf. Sci., 179(21):3804–3813, 2009.

[18] H.R. Karimi. Robust h∞ filter design for uncertain linearsystems over network with network-induceddelays and output quantization. Model., Identificat. Control., 30(1):27–37, 2009.

[19] M. Yu, L.Wang, T.G. Chu, and G.M. Xie. Stabilization of networked control systems with data packetdropout and network delays via switching system approach. proc. 43rd IEEE conf. Decis. Control., pages 3539–3544, 2004.

[20] Y.F. Guo. Switched filtering for networked systems with multiple packet dropouts. Frankl. Inst., 354(7):3134– 3151, 2017.

[21] D. Yue, E.G. Tian, and Q.L. Han. A delay system method for designing event-triggered controllers of networked control systems. IEEE Trans. Autom. Control, 58(2):475–481, 2013.

[22] Q. Li, B. Shen, J.L. Liang, and H.S. Shu. Event-triggered synchronization control for complex networks with uncertain inner coupling. Int. J. Genetal Syst., 44(2):212–225, 2015.

[23] P. Chen and Q.L. Han. On designing a novel self-triggered sampling scheme for networked control systems with data losses and communication delays. IEEE Trans. Ind. Electron., 63(2):1239–1248, 2016.

[24] L. Ding, Q.L. Han, and X.H. Ge. An overview of recent advances in event-triggered consensus of multiagent systems. IEEE Trans. Cybern., 48(4):1110–1123, 2018.

[25] B. Shen, Z.D. Wang, and H. Qiao. Event-triggered state estimation for discrete-time multidelayed neural networks with stochastic parameters and incomplete measurements. IEEE Trans. Neural Netw. Learn. Syst., 28(5):1152–1163, 2017.

[26] G. Guo, L. Ding, and Q.L. Han. A distributed event-triggered transmission strategy for sampled-data consensus of multi-agent systems. Automatica, 50(5):1489–1496, 2014.

[27] C. Liu and F. Hao. Dynamic output-feedback control for linear systems by using event-triggered quantisation. IET Control Theory Appl., 9(8):1254–1263, 2015.

[28] J.K. Sun, J. Yang, S.H. Li, and W.X. Zheng. Sampled-data-based event-triggered active distrubance rejection control for distrubed systems in networked environment. IEEE Trans. Cybern., 49(2):556–566, 2019.

[29] S.L. Hu and D. Yue. Event-triggered control design of linear networked systems with quantizations. ISA Trans., 51(1):153–162, 2012.

[30] T.F. Liu and Z.P. Jiang. Event-triggered control design of nonlinear systems with quantization. IEEE Trans Autom Control., 64(2):797–803, 2019.

[31] B.C. Zheng, X.H. Yu, and Y.M. Xue. Quantized feedback sliding-mode control: An event-triggered approach. Automatic, 91:126–135, 2018.

[32] M.Y. Fu and L.H. Xie. The sector bound approach to quantized feedback control. IEEE Trans Autom Control., 50(11):1698–1711, 2005.

[33] H. Ishii and B.A. Francis. Quadratic stabilization of sampled-data systems with quantization. Automatic., 39(10):1793–1800, 2003.

[34] Y.C. Sun and G.H. Yang. Periodic event-triggered resilient control for cyber-physical systems under denialof- service attacks. J. Franklin. Inst., 335(13):5613–5631, 2018.

[35] H.T. Sun, C. Peng, W.D. Zhang, and T.C. Yang. Security-based resilient event-triggered control of networked control systems under denial of service attacks. J. Franklin. Inst., 356(17):10277–10295, 2018.

[36] C. Peng, J.C. Li, and M.R. Fei. Resilient event-triggering h∞ load frequency control for multi-area power systems with energy-limited dos attacks. IEEE Trans. Power Syst., 32(5):4110–4118, 2017.

[37] B. Chen, W.C. Ho, G.Q. Hu, and L. Yu. Secure fusion estimation for bandwidth constrained cyber-physical systems under replay attacks. IEEE Trans. Cybern., 48(6):1862–1876, 2018.

[38] Z.H. Pang and G.P. Liu. Design and implementation of secure networked predictive control systems under deception attacks. IEEE Trans. Control Syst. Technol., 20(5):1334–1342, 2012.

[39] W. Yang, L. Lei, and C. Yang. Event-based distributed state estimation under deception attack. Neurocomputing., 270:145–151, 2017.

[40] D.R. Ding, Z.D. Wang, W.C. Daniel, and G.L. Wei. Distributed recursive filtering for stochastic systems under uniform quantizations and deception attacks through sensor networks. Automatic., 78:231–240, 2017.

[41] M.H. Zhu and S. Martinez. On the performance analysis of resilient networked control systems under replay attacks. IEEE Trans. Autom. Control, 59(3):804–808, 2014.

[42] J.L. Liu, L.L. Wei, E.G. Tian, S.M. Fei, and J. Cao. Hybrid-driven-based h∞ filtering design for networked systems under stochastic cyber attacks. Journal of the Franklin Institute, 354(18):8490–8512, 2017.

[43] H.J. Li. Sampled-data state estimation for complex dynamical networks with time-varying delay and stochastic sampling. Neurocomputing, 138(11):75–85, 2014.

[44] D. H. He and L.G. Xu. Boundedness analysis of stochastic integro-differential systems with lévy noise. J. Taibah 304Univ. Sci., (111):87–93, 2020.

[45] L. G. Xu and H. X. Hu. Boundedness analysis of stochastic pantograph differential systems. Appl. Math. Lett., 111(111):106630, 2021.