Isaac Scientific Publishing

Modern Organic Chemistry Research

Fabrication of Organic Solar Cells based on Photosensitive Small Molecules and Study of Electron Acceptor Layer Effect on Efficiency

Download PDF (904.5 KB) PP. 35 - 42 Pub. Date: November 17, 2016

DOI: 10.22606/mocr.2016.11005

Author(s)

  • Priyanka P. K umavat
    School of Chemical Sciences, North Maharashtra University, Jalgaon - 425 001(M.S.), India
  • Dipak S. Dalal*
    School of Chemical Sciences, North Maharashtra University, Jalgaon - 425 001(M.S.), India

Abstract

We have designed and synthesized an efficient and novel photosensitive two small organic molecules with different lengths of methine units, cyano groups as the electron acceptor units, and amino groups as the electron donor units. Compound 1 was synthesized from benzaldehyde, malononitrile and hydrazine hydrate and benzaldehyde whereas compound 2 was synthesized from benzaldehyde, Dimedone and hydrazine hydrate and their thermal, phovoltaic and surface properties were studied. Then these small molecules were utilized for development of organic solar cells in FTO: ZnO: Organic compound: Electrolyte: Pt electrode pattern.

Keywords

Organic solar cells (OSCs), zinc oxide (ZnO), titanium Oxide (TiO2), electrolyte, efficiency.

References

[1] Y.H. Zhou, C.F. Hernandez, J. Shim, J. Meyer, A.J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, “A Universal Method to Produce Low–Work Function Electrodes for Organic Electronics” Science, vol. 336, pp. 327-332, 2012.

[2] M. Jorgensen, K. Norrman, S.A. Gevorgyan, T. Tromholt, B. Andreasen, F.C. Krebs, “Stability of polymer solar cells” Advanced Materials, vol. 24, pp. 580-612, 2012.

[3] S.Y. Park, Y.J. Kang, S. Lee, D.G. Kim, J.K. Kim, J.H. Kim, J.W. Kang, “Spray-coated organic solar cells with large-area of 12.25 cm2” Solar Energy Materials and Solar Cells, vol. 95, pp. 852-855, 2011.

[4] H. Jin, C.Tao, M. Velusamy, M. Aljada, Y.L. Zhang, M. Hambsch, P.L. Burn, P. Meredith, “Efficient, Large Area ITO-and-PEDOT-free Organic Solar Cell Sub-modules” Advanced Materials, vol. 24, pp. 2572-2577, 2012.

[5] L. Bahadur, M. Hamdani, J.F. Koenig, P. Chartier, “Studies on semiconducting thin films prepared by the spray pyrolysis technique for photoelectrochemical solar cell applications: Preparation and properties of ZnO” Solar Energy Materials, vol. 14, pp. 107-120, 1986.

[6] L. Znaidi, G.S Illia, S. Benyahia, C. Sanchez, A.V. Kanaev, “Oriented ZnO thin films synthesis by sol–gel process for laser application” Thin Solid Films, vol. 428, pp. 257-262, 2003.

[7] X.L. Cheng, H. Zhao, L.H. Huo, S. Gao, J.G. Zhao, “ZnO nanoparticulate thin Im: Preparation, Characterization and gas sensing property” Sensors and Actuators B: Chemical, vol. 102, pp. 248-252, 2004.

[8] H. Li, J. Wang, H. Liu, H. Zhang, X. Li, “Zinc oxide films prepared by sol–gel method” Journal of Crystal Growth, vol. 275, pp. 943-946, 2005.

[9] S.R. Cowan , P. Schulz , A.J. Giordano , A. Garcia , B.A. MacLeod , S.R. Marder , A. Kahn , D.S. Ginley , E.L. Ratcliff , D.C. Olson, “Chemically Controlled Reversible and Irreversible Extraction Barriers Via Stable Interface Modification of Zinc Oxide Electron Collection Layer in Polycarbazole-based Organic Solar Cells” Advanced Functional Materials, vol. 24, pp. 4671, 2014.

[10] M.J. Jin, J. Jo, J.H. Kim, K.S. An, M.S. Jeong, J. Kim, J.W. Yoo, “Effects of TiO2 interfacial atomic layers on device performances and exciton dynamics in ZnO nanorod polymer solar cells” ACS Applied Materials & Interfaces, vol. 6, pp. 11649-11656, 2014.

[11] N. Chaturvedi, S.K. Swami, A. Kumar, V. Dutta, “Role of ZnO nanostructured layer spray deposited under an electric field in stability of inverted organic solar cells” Solar Energy Materials & Solar Cells, vol. 126, pp. 74-82, 2014.

[12] D. Duche, F. Bencheikha, S.B. Dkhil, M. Gaceur, N. Berton, O. Margeat, J. Ackermann, J.J. Simon, “Optical performance and color investigations of hybrid solar cells based on P3HT:ZnO, PCPDTBT:ZnO, PTB7:ZnO and DTS(PTTh2)2:ZnO” Solar Energy Materials & Solar Cells, vol. 126, pp. 197-204, 2014.

[13] J. J. Intemann , K. Yao , Y.X. Li , H.L. Yip , Y.X. Xu , P.W. Liang ,C.C. Chueh , F.Z. Ding , X. Yang , X. Li , Y. Chen, A.K.Y. Jen, “Highly Efficient Inverted Organic Solar Cells Through Material and Interfacial Engineering of Indacenodithieno[3,2-b]thiophene-Based Polymers and Devices” Advanced Functional Materials, vol. 24, pp. 1465-1473, 2014

[14] S.H. Eom, M.J. Baek, H. Park, L. Yan, S. Liu, W. You, S.H. Lee, “Roles of Interfacial Modifiers in Hybrid Solar Cells: Inorganic/Polymer Bilayer vs Inorganic/Polymer:Fullerene Bulk Heterojunction” ACS Applied Materials & Interfaces, vol. 6, pp. 803-810, 2014.

[15] D. Barrera, Y.J. Lee, J.W.P. Hsu, “Influence of ZnO sol–gel electron transport layer processing on BHJ active layer morphology and OPV performance” Solar Energy Materials & Solar Cells, vol. 125, pp. 27-32, 2014.

[16] J.M. Chiu, Y. Tai, “Improving the Efficiency of ZnO-Based Organic Solar Cell by Self-Assembled Monolayer Assisted Modulation on the Properties of ZnO Acceptor Layer” ACS Applied Materials & Interfaces, vol. 5, pp. 6946-6950, 2013.

[17] D.W. Chen, T.C. Wang, W.P. Liao, J.J. Wu, “Synergistic effect of dual interfacial modifications with roomtemperature- grown epitaxial ZnO and adsorbed indoline dye for ZnO nanorod array/P3HT hybrid solar cell” ACS Applied Materials & Interfaces, vol. 5, pp. 8359-8365, 2013.

[18] S.B. Kang, Y.J. Noh, S.I. Na, H.K. Kim, “Brush-painted flexible organic solar cells using highly transparent and flexible Ag nanowire network electrodes” Solar Energy Materials & Solar Cells, vol. 122, pp.152-157, 2014.

[19] P. Sehgal, A.K. Narula, “Poly(3-hexylthiophene)/hexamine modified ZnO hybrid nanocomposite: structural, optical, thermal and electrical transport studies” Journal of Materials Science: Materials in Electronics, vol. 25, pp. 4793-4799, 2014.

[20] P.P. Kumavat, A.D. Jangale, D.R. Patil, K.S. Dalal, J.S. Meshram, D.S. Dalal, Green synthesis of symmetrical N, N′-disubstituted thiourea derivatives in water using solar energy” Environmental Chemistry Letters, vol. 11, pp. 177-182, 2013.

[21] D.R. Patil, Y.B.Wagh, P.G. Ingole, K. Singh, D.S. Dalal, “ β -Cyclodextrin-mediated highly efficient [2+3] cycloaddition reactions for the synthesis of 5-substituted 1H-tetrazoles, New Journal of Chemistry, vol. 37, pp. 3261-3266, 2013.

[22] Y.A. Tayade, D.R. Patil, Y.B. Wagh, A.D. Jangale, D.S. Dalal, “An efficient synthesis of 3-indolyl-3-hydroxy oxindoles and 3,3-di(indolyl)indolin-2-ones catalyzed by sulfonated β -CD as a supramolecular catalyst in water” Tetrahedron Letters, vol. 56, pp. 666-673, 2015.

[23] Y.A. Tayade, S.A. Padvi, Y.B. Wagh, D.S. Dalal, “β-Cyclodextrin as a supramolecular catalyst for the synthesis of dihydropyrano[2,3-c]pyrazole and spiro[indoline-3,4′-pyrano[2,3-c]pyrazole] in aqueous medium” Tetrahedron Letters, vol. 56, pp. 2441-2447, 2015.

[24] Y.B. Wagh, A. Kuwar, S.K. Sahoo, J. Gallucci, D.S. Dalal, “Highly selective fluorimetric sensor for Cu2+ and Hg2+ using a benzothiazole-based receptor in semi-aqueous media and molecular docking studies” RSC Advances, vol. 5, pp. 45528-45534, 2015.

[25] A.D. Jangale, P.P. Kumavat, Y.B. Wagh, Y.A. Tayade, P.P. Mahulikar, D.S. Dalal, “Green Process Development for the Synthesis of Aliphatic Symmetrical N,N′-Disubstituted Thiourea Derivatives in Aqueous Medium” Synthetic Communications, vol. 45, pp. 376-385, 2015.

[26] P.P. Kumavat, P.K. Baviskar, B.R. Sankapal, D.S. Dalal, “Synthesis of D–D–A-type small organic molecules with an enlarged linker system towards organic solar cells and the effect of co-adsorbents on cell performance” New Journal of Chemistry, vol. 40, pp. 634-640, 2016.