Isaac Scientific Publishing

Modern Organic Chemistry Research

Efficient Synthesis of Long-Chain N’-hydroxy-N-alkyl- and -N,N-dialkylpyridinecarboximidamides

Download PDF (329.8 KB) PP. 17 - 24 Pub. Date: February 14, 2017

DOI: 10.22606/mocr.2017.21004

Author(s)

  • Przemysław Aksamitowski
    Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo St. 4, 60-965 Poznan, Poland
  • Karolina Wieszczycka*

    Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo St. 4, 60-965 Poznan, Poland
  • Aleksandra Wojciechowska

    Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo St. 4, 60-965 Poznan, Poland
  • Irmina Wojciechowska

    Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo St. 4, 60-965 Poznan, Poland
  • Grzegorz Framski

    Institute of Bioorganic Chemistry, Polish Academy of Science, Noskowskiego St. 12/14, 61-704 Poznan, Poland

Abstract

N’-hydroxy-N-alkylpyridinecarboximidamides are new class of N-substituted imidamide derivatives, with diverse potential applications. In this study, the synthesis of novel long-chain N-substituted pyridinecarboximidamides: N’-hydroxy-N-alkylpyridinecar-boximidamides and N’-hydroxy-N,N-dialkylpyridinecarboximidamides is reported. The two methods were proposed and compared: (I) the two-step procedure (synthesis of N-alkylpyri-dinecarboximidamide and next N'-hydroxy-N-alkylpyridinecarboximidamide) and (II) the three-step procedure (synthesis from pyridineamidoxime by pyridinehydroximoyl chloride and finally preparation of N'-hydroxy-N-alkylor -N,N-dialkylpyridinecarboximidamide). It was indicated that only the three-step procedure enabled the efficient synthesis of the N'-hydroxy-N,N-dialkylpyridinecarboximi-damide with the substituent at position 3 and 4 of the pyridine ring.

Keywords

N’-hydroxy-N-alkylpyridinecarboximidamides; synthesis; substitution

References

[1] E. Abele, R. Abele and E. Lukevics, “Pyridine oxime: synthesis, reactions and biological activity. Review”, Chemistry of Heterocyclic Compounds, vol. 39, no. 7, pp. 825–865, 2003.

[2] E. F. V. Scriven, R. Murugan, “Pyridine and Pyridine Derivatives”, Kirk-Othmer Encyclopedia of Chemical Technology, 2005.

[3] S. Shimizu, N. Watanabe, T. Kataoka, T. Shoji, N. Abe, S. Morishita, H. Ichimura, ?Pyridine and Pyridine Derivatives”, Ullmann's Encyclopedia of Industrial Chemistry, 2000.

[4] K. C. Fylaktakidou, D. J. Hadjipavlou-Litina, K. E. Litinas, E. Varella and D. N. Nicolaides, “Recent developments in the chemistry and in the biological applications of amidoximes”, Current Pharmaceutical Design, vol.14, pp.1001–1047, 2008.

[5] J. E. Hall, J. E. Kerrigan, K. Ramachandran, B. C. Bender, J. P. Stanko, S. K. Jones, D.A. Patrick and R. R. Tidwell, “Anti-pneumocystis Activities of aromatic diamidoxime prodrugs”, Antimicrobial Agents and Chemotherapy, vol. 42, pp. 666–674, 1998.

[6] L. Keurulainen, M. Heiskari, S. Nenonen, A. Nasereddin, D. Kopelyanskiy, T. O. Leino, J. Yli-Kauhaluoma, C. L. Jaffe and P. Kiuru, “Synthesis of carboxyimidamide-substituted benzo[c][1,2,5]oxadiazoles and their analogs, and evaluation of biological activity against”, Leishmania donovani, Medical Chemical Communications, vol. 6, pp. 1673-1678, 2015.

[7] D. W. Boykin, A. Kumar, B. C. Bender, J. E. Hall and R. R. Tidwell, “Anti-pneumocystis activity of bisamidoximes and bis-O-alkylamidoximes prodrugs”, Bioorganic and Medicinal Chemistry Letters, vol. 6, pp. 3017– 3020, 1996.

[8] P. Desbordes, S. Gary, M.C. Grosjean-Cournoyer, B. Hartmann, P. Rinolfi and J.P. Vors, “Fungicidal Ncycloalkyl- benzyl-thiocarbox amides or N-cycloalkyl-benzyl-N'-sunstituted-amidine derivatives“ US Patent 8410157, 2013

[9] T. Izawa, T. Kashiwabara, S. Nakajima and N. Ogawa, “Pyridyl carboximidamide compounds useful in treating blood pressure”, US Patent 5223508, 1993.

[10] T. Yokoyama, Y. Okada, N. Ogawa, T. Izawa and H. Fukushima “Vasodilating mechanisms of Ki1769, Ki3315 and KRN2391, pyridinecarboximidamide derivatives, in isolated porcine coronary artery“, Japanese Journal of Pharmacology, vol. 64, pp. 241-241, 1994.

[11] M. Salonen, H. Saarinen and I. Mutikainen, “Equilibrium and structural studies of copper(II) and nickel(II) complexes with pyridine-2,6-diamidoxime in aqueous solution”, Journal of Coordination Chemistry, vol. 61, no. 9, pp. 1462-1474, 2008.

[12] M. Salonen, “Formation of zinc(II) and cadmium(II) complexes with pyridine-2-carboxamidoxime and pyridine- 2-acetamidoxime in aqueous solution”, Journal of Coordination Chemistry, vol. 63, no. 17, pp. 3127-3136, 2010.

[13] M. M. Khalifa, M. J. Bodner, J. A. Berglund and M. M. Haley Synthesis of N-substituted aryl amidines by strong base activation of amines“, Tetrahedron Letters, vol. 56, no. 27, pp. 4109-4111, 2015.

[14] I. Karatas and C. Tuzun “Synthesis of some terephtalo-N,N’-di and tetra substituted amidoximes", Communications Faculty of Science of University Ankara, Series B: Chemistry, Chemical Engineering, vol. 37, pp. 31-35, 1991.

[15] E. Bernasek, “Pyridineamidoximes”, Journal of Organic Chemistry, vol. 22, pp. 1263–1263, 1957.

[16] M. Ko?evar, S. Polanc, M. Sollner, M. Ti?ler and B. Ver?ek, “Simple procedure for the synthesis of pyridinecarbohydroximoyl chlorides and bromides”, Synthetic Communications: An international journal for rapid communication of synthetic organic chemistry, vol. 18, no. 12, pp. 1427-1432, 1988.