Isaac Scientific Publishing

Journal of Particle Physics

Can We Have a Second Light Higgs Boson in the LHC Data

Download PDF (599.3 KB) PP. 51 - 87 Pub. Date: July 19, 2017

DOI: 10.22606/jpp.2017.11004

Author(s)

  • Shaaban Khalil
    Center for Fundamental Physics, Zewail City of Science and Technology, Sheikh Zayed,12588, Giza, Egypt 2
  • Stefano Moretti*
    School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ, UK

Abstract

A second light Higgs boson, with mass ≈ 140–145 GeV, is predicted by non-minimal Supersymmetric models. This new particle can account for ∼ 3σ excesses recorded by the ATLAS and CMS experiments at the Large Hadron Collider (LHC) during Run 1. We show how this can be explained in a particular realisation of these scenarios, the (B −L) Supersymmetric Model (BLSSM), which also has other captivating features, like offering an explanation for neutrino masses and releaving the small hierarchy problem of the Minimal Supersymmetric Standard Model (MSSM).

Keywords

NULL

References

[1] F. Wilczek, Nature 496, 439 (2013).

[2] I.I. Rabi, “Who ordered that?” (a quip in 1957, verbal).

[3] CMS Collaboration, Phys. Rev. D 89, 092007 (2014).

[4] CMS Collaboration, CMS-PAS-HIG-13-001 (2013) and CMS-PAS-HIG-13-016 (2013).

[5] ATLAS Collaboration, ATLAS-CONF-2013-012.

[6] ATLAS Collaboration, Phys. Rev. D 90, 112015 (2014).

[7] CMS Collaboration, CMS-PAS-HIG-13-044 (2013); ATLAS Collaboration, ATLAS-CONF-2013-012 (2013) and Phys. Lett. B 726, 88 (2013) [Erratum, ibidem 734, 406 (2014)]; CDF & D0 Collaborations, Phys. Rev. D 88, 052014 (2013).

[8] ATLAS Collaboration, JHEP 1609, 1 (2016), JHEP 1609, 173 (2016), ATLAS-CONF-2016-059, ATLASCONF-2016-079, ATLAS-CONF-2016-082 and ATLAS-CONF-2016-083.

[9] CMS Collaboration, CMS-PAS-HIG-16-001, CMS-PAS-HIG-16-014 and CMS-PAS-HIG-16-023.

[10] CMS Collaboration, CMS-PAS-HIG-16-033.

[11] A. Elsayed, S. Khalil and S. Moretti, Phys. Lett. B 715, 208 (2012).

[12] S. Khalil and S. Moretti, Rep. Prog. Phys. 80, 036201 (2017).

[13] B. O’Leary, W. Porod and F. Staub, JHEP 1205, 042 (2012).

[14] W. Abdallah, S. Khalil and S. Moretti, Phys. Rev. D 91, 014001 (2015).

[15] A. Hammad, S. Khalil and S. Moretti, Phys. Rev. D 92, 095008 (2015).

[16] F. Staub, arXiv:0806.0538 [hep-ph].

[17] W. Porod, Comput. Phys. Commun. 153, 275 (2003).

[18] W. Porod and F. Staub, Comput. Phys. Commun. 183, 2458 (2012).

[19] J. Alwall et al., JHEP 1407, 079 (2014).

[20] E. Conte, B. Fuks and G. Serret, Comput. Phys. Commun. 184, 222 (2013).

[21] P. Bechtle, O. Brein, S. Heinemeyer, O. St?l, T. Stefaniak, G. Weiglein and K. E. Williams, Comput. Phys. Commun. 181, 138 (2010) and Comput. Phys. Commun. 182, 2605 (2011).

[22] P. Bechtle, S. Heinemeyer, O. St?l, T. Stefaniak and G. Weiglein, Eur. Phys. J. C 74, 2711 (2014).

[23] F. Mahmoudi, Comput. Phys. Commun. 180, 1579 (2009).

[24] S. Moretti, Phys. Rev. D 91, 014012 (2015).

[25] G. Belanger, U. Ellwanger, J. F. Gunion, Y. Jiang, S. Kraml, arXiv:1208.4952 [hep-ph].

[26] J. F. Gunion, Y. Jiang and S. Kraml, Phys. Rev. D 86, 071702 (2012).

[27] U. Ellwanger, C. Hugonie and A. M. Teixeira, Phys. Rept. 496, 1 (2010).

[28] A. Einstein, “On the Method of Theoretical Physics”, The Herbert Spencer Lecture, delivered at Oxford (10 June 1933), published in Philosophy of Science, Vol. 1, No. 2 (April 1934), pp. 163-169, see p. 165.