Isaac Scientific Publishing

Journal of Particle Physics

Magnetic Catalysis in the Higher-Order Quark Sigma Model

Download PDF (763.5 KB) PP. 58 - 64 Pub. Date: July 19, 2017

DOI: 10.22606/jpp.2017.11005

Author(s)

  • M. Abu-Shady*
    Department of Applied Mathematics, Faculty of Science, Menoufia University, Egypt

Abstract

The effect of the higher-order mesonic interactions in the presence of an external magnetic field is investigated within the framework of the chiral symmetry breaking mechanism. The effect of higher-order mesonic potential is employed and numerically solved in the mean-field approximation. The chiral symmetry breaking increases with ascending magnetic field. Two sets of free parameterization are investigated on the magnetic catalysis. A comparison is discussed with the other studies and Lattice QCD. The obtained results are included that the higher-order quark sigma model gives good description for the magnetic catalysis.

Keywords

Chiral lagrangian density, magnetic catalysis, chiral symmetry breaking.

References

[1] V. S. Timoteo and C. L. Lima, Phys. Lett. B, vol. 635, p. 168, 2006.

[2] M. Gell-Mann and M. Levy, Nuovo Cinmento, vol. 16, p. 705, 1960.

[3] M. Birse and M. Banerjee, Phys. Rev. D, vol. 31, p. 118, 1985.

[4] B. Golli and M. Rosina, Phys. Lett. B, vol. 165, p. 347, 1985.

[5] K. Goeke, M. Harvey, F. Grummer, and J. N. Urbano, Phys. Rev. D, vol. 37, p. 754, 1988.

[6] T. S. T. Aly, J. A. McNeil, and S. Pruess, Phys. Rev. D, vol. 60, p. 1114022, 1999.

[7] W. Broniowski and B. Golli, Nucl. Phys. A, vol. 714, p. 575, 2003.

[8] M. Abu-Shady, Int. J. Mod. Phys. A, vol. 26, p. 235, 2011.

[9] ——, Int. J. Theor. Phys., vol. 48, p. 1110, 2009.

[10] ——, Phys. Atom. Nuclei, vol. 73, p. 944, 2009.

[11] ——, Int. J. Theor. Phys., vol. 48, p. 115, 2009.

[12] N. Bilic and Nikolic, Eur. Phys. J. C, vol. 6, p. 515, 1999.

[13] O. Scanvenius, A. Moscsy, I. N. Mishustin, and D. H. Rischke, Phys. Rev.C, vol. 64, p. 045202, 2001.

[14] H. Mao, T.-Z. Wei, and J.-S. Jin, Phys. Rev. C, vol. 88, p. 035201, 2013.

[15] M. Abu-Shady, Int. J. Mod. Phys. E, vol. 21, p. 1250061, 2012.

[16] ——, Int. J. Theor. Phys., vol. 49, p. 2425, 2010.

[17] ——, Int. J. Theor. Phys., vol. 50, p. 1372, 2011.

[18] D. Kharzeev, K. Landsteiner, A. Schmitt, and H. U. Yee, Strongly interacting matter in magnetic fields. Springer, 2013.

[19] B. S. Kandemir and A. Mogulkoc, Phys. Lett. A, vol. 379, p. 2120, 2015.

[20] K. Kamikado and T. Kanazawa, JHEP, vol. 1, p. 129, 2015.

[21] G. N. Ferrari, A. F. Garcia, and M. B. Pinto, Phys. Rev. D, vol. 86, p. 096005, 2012.

[22] A. Goyal and M. Dahiya, Phys. Rev. D, vol. 62, p. 025022, 2011.

[23] S. P. Klevansky and R. H. Lemmar, Phys. Rev. D, vol. 39, p. 3478, 1989.

[24] I. A. Shushpanov and A. V. Smilga, Phys. Lett. B, vol. 16, p. 402, 1997.

[25] ——, Phys. Lett. B, vol. 16, p. 351, 1997.

[26] H. Suganuma and T. Tastsumi, Annals. Phys, vol. 208, p. 470, 1991.

[27] K. G. Klimenko and T. Mat, Fiz., vol. 89, p. 211, 1991.

[28] V. P. Gusynin, V. A. Miransky, and I. A. Shovkovy, Phy. Rev. Lett., vol. 73, p. 3499, 1994.

[29] A. Feijoo, V. K. Magas, A. Ramos, and E. Oset, Phys. Rev. D, vol. 92, p. 076015, 2015.

[30] M. Abu-Shady and M. Soleiman, Phys. Part. and Nucl. Lett., vol. 10, p. 683, 2013.

[31] E. Elizalde, J. Phys. Math. Gen., vol. 18, p. 1637, 2013.

[32] M. Abu-Shady, Appl. Math. Inf. Sci. Lett., vol. 4, p. 5, 2016.

[33] G. S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S. D. Katz, S. Krieg, A. Schafer, and K. K. Sz-abo, JHEP, vol. 1202, p. 044, 2012.

[34] G. S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S. D. Katz, and A. Schafer, Phys. Rev. D, vol. 86, p. 071502, 2012.