Frontiers in Signal Processing
Robust RLS Wiener FIR Filter for Signal Estimation in Linear Discrete-Time Stochastic Systems with Uncertain Parameters
Download PDF (944.7 KB) PP. 19 - 36 Pub. Date: April 30, 2019
Author(s)
- Seiichi Nakamori*
Department of Technology, Faculty of Education, Kagoshima University, Kagoshima, Japan
Abstract
Keywords
References
[1] A. H. Jazwinski, Limited memory optimal filtering. IEEE Trans. Automatic Control, vol.13, no.10, pp.558–563, 1968.
[2] W. H. Kwon and S. Han, Receding Horizon Control: Model Predictive Control for State Models, London, UK: Springer; 2005.
[3] S. Zhao S, Y. S. Shmaliy, P. Shi and C. K. Ahn, Fusion Kalman/UFIR filter for state estimation with uncertain parameters and noise statistics. IEEE Trans. Industrial Electronics, vol.64, no.4, pp.3075–3083, 2017.
[4] S. Zhao, Y. S. Shmaliy and F. Liu, Fast Kalman-like optimal unbiased FIR filtering with applications, IEEE Trans. Signal Processing, vol.64, no.9, pp.2284–97, 2016.
[5] S. Zhao, Y. S. Shmaliy and F. Liu, Fast Kalman-like optimal FIR filter for time-variant systems with improved robustness, ISA Transactions, Volume 80, pp.160–168, 2018.
[6] J. M. Pak, C. K. Ahn, Y. H. Mo and M. T. Lim, Moon Kyou Song, Maximum likelihood FIR filter for visual object tracking, Neurocomputing, 216, pp.543–553, 2016.
[7] X. Wang, W. Liu and Z. Deng, Robust weighted fusion Kalman estimators for systems with multiplicative noises, missing measurements and uncertain-variance linearly correlated white noises, Aerospace Science and Technology, vol.68, pp.331–344, 2017.
[8] S. Nakamori, Robust RLS Wiener signal estimators for discrete-time stochastic systems with uncertain parameters, Frontiers in Signal Processing, vol.1, no.3, pp.1–18, 2019.
[9] X. Zhu, Y. C. Soh and L. Xie, Design and analysis of discrete-time robust Kalman filters, Automatica, vol.38, no.6, pp.1069–1077, 2002.
[10] S. Nakamori, RLS Wiener FIR predictor and filter based on innovation approach in linear discrete-time stochastic systems, Frontiers in Signal Processing, vol.1, no.2, pp.49–61, 2017.
[11] A. P. Sage and J. L. Melsa, Estimation Theory with Applications to Communications and Control, New York: McGraw-Hill, 1971.