联系我们
Isaac Scientific Publishing
Theoretical Physics
TP > Volume 4, Number 1, March 2019

Aharonov-Bohm Effect vs. Dirac Monopole: A-B ⇔ D

Download PDF  (246.7 KB)PP. 40-45,  Pub. Date:February 19, 2019
DOI: 10.22606/tp.2019.41004

Author(s)
Miguel Socolovsky
Affiliation(s)
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510, México D. F., México
Abstract
In the context of fiber bundle theory, we show that the existence of the Aharonov-Bohm connection implies the existence and uniqueness of the Dirac connection.
Keywords
Aharonov-Bohm effect, Dirac monopole, fiber bundles. PACS numbers: 02.40.-k, 02.40.Re, 03.65. Vf, 03.65.-w
References
  • [1]  Y. Aharonov, D. Bohm, Significance of electromagnetic potentials in the quantum theory, Phys. Rev. 115, (1959), 485-491.
  • [2]  R. G. Chambers, Shift of an electron interference pattern by enclosed magnetic flux, Phys. Rev. Lett. 5, (1960), 3-5.
  • [3]  P.A.M. Dirac, Quantized Singularities in the Electromagnetic Field, Proc. Roy. Soc. A133, (1931), 60-72.
  • [4]  P.A.M. Dirac, The Theory of Magnetic Poles, Phys. Rev. 74, (1948), 817-830.
  • [5]  J.J. Sakurai, Modern Quantum Mechanics, The Benjamin, Menlo Park, (1985), pp. 140-143.
  • [6]  Idem ref. [5], pp. 136-139.
  • [7]  T.T. Wu, C.N. Yang, Concept of nonintegrable phase factors and global formulation of gauge fields, Phys. Rev. D 12, (1975), 3845-3857.
  • [8]  M. Socolovsky, Aharonov-Bohm effect, Dirac monopole, and bundle theory, Theor. Phys. 3, Nr. 3, (2018), 83-89.
  • [9]  M.A. Aguilar, M. Socolovsky, Aharonov-Bohm Effect, Flat Connections, and Green’s Theorem, Int. Jour. Theor. Phys. 41, (2002), 839-860.
  • [10]  M. Socolovsky, Spin, Monopole, Instanton and Hopf Bundles, Aportaciones Matemáticas, Notas de Investigación 6, Soc. Mat. Mex., (1992), 141-164.
  • [11]  H. Hopf, Uber die Abbildungen der dreidimensionalen Sphare auf die Kugelflache, Math. Ann. 104, (1931), 637-665.
  • [12]  A. Trautman, Solutions of the Maxwell and Yang-Mills Equations Associated with Hopf Fibrings, Int. Jour. Theor. Phys. 16, (1977), 561-565.
  • [13]  M. Socolovsky, Sequence of maps betwwen Hopf and Aharonov-Bohm bundles, Theor. Phys. 3, Nr. 4, (2018), 109-111.
  • [14]  J. Preskill, Magnetic Monopoles, Ann. Rev. Nucl. Part. Sci. 34, (1984), 461-530.
  • [15]  J. Polchinski, Monopoles, Duality, and String Theory, Int. Jour. Mod. Phys., A19, (2004), 145-156.
  • [16]  G.L. Naber, Topology, Geometry, and Gauge Fields. Foundations, Springer-Verlag, New York, (1997), pp. 11-20.
  • [17]  S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, Vol. I, John Wiley, New York, (1963), pp. 79-81.
Copyright © 2019 Isaac Scientific Publishing Co. All rights reserved.