Advances in Astrophysics
Re-Visiting the Anisotropy of Inertia Experiments
Download PDF (289.4 KB) PP. 47 - 53 Pub. Date: May 1, 2016
Author(s)
- Robert L. Shuler*
NASA Johnson Space Center/EV5, 2101 NASA Parkway, Houston, TX 77058
Abstract
Keywords
References
[1] Einstein, “Is There a Gravitational Effect Which Is Analogous to Electrodynamic Induction?” Vierteljahrschrift für gerichtliche Medizin (ser. 3), 44, 37-40 (1912).
[2] Available in The Collected Papers of Albert Einstein, Vol. 4 (English), trans. Anna Beck, Princeton University Press, Princeton (1996).
[3] A. Einstein, in Mach's Principle: From Newton's Bucket to Quantum Gravity, edited by J. Barbour and H. Pfister, Birkhauser, Basel, Switzerland, (1995).
[4] R.L. Shuler, “A Fresh Spin on Newton's Bucket,’ Phys. Ed., 50, 1 p88 (2015). G. Cocconi and E. E. Salpeter, “A Search for Anisotropy of Inertia,” Nuovo Cimento, 10, 646-651 (1958).
[5] G. Cocconi and E. E. Salpeter, “Upper Limit for the Anisotropy of Inertia from the M?ssbauer Effect,” Phys. Rev. Letters, 4, 176-177 (1960).
[6] R. W. P. Drever, “A Search for Anisotropy of Inertial Mass using a Free Precession Technique,” Phil. Mag., 6, 683-687 (1961).
[7] R. Shuler, “Isotropy, Equivalence and the Laws of Inertia,” Phys. Essays, 24, 4 (2011) pp. 498-507.
[8] R.P. Gruber, R.H. Price, S.M. Matthews, W.R. Cordwell, and L.F. Wagner, “The Impossibility of a Simple Derivation of the Schwarzschild Metric,” Am. J. Phys., 56, 265-269 (1988).
[9] J. Hanc, S. Tuleja and M. Hancova, “Symmetries and Conservation Laws: Consequences of Noether’s Theorem,” Am. J. Phys., 72, 4, pp 428-435 (2004).
[10] I. Ciufolini and J. Wheeler, Gravitation and Inertia, Princeton University Press, Princeton, New Jersey (1995).
[11] H. Leutwyler, “A No-Interaction Theorem in Classical Relativistic Hamiltonian Particle Mechanics,” Nuovo Cimento, 37, 2, 556-567 (1965).
[12] J.H. Taylor, L.A. Fowler and P.M. McCulloch, “Measurements of General Relativistic Effects in the Binary Pulsar PSR1913+16,” Nature, 277, 8, pp. 437-440 (1979).
[13] C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation, W.H. Freeman & Co., San Francisco (1973) p 429.
[14] M. Blau, “Lecture Notes on General Relativity,” Institute for Theoretical Physics, University of Bern, Switzerland (2014). http://www.blau.itp.unibe.ch/Lecturenotes.html15. National Center for Biotechnology Information, Available: http://www.ncbi.nlm.nih.gov
[15] W. Rindler, Relativity Special, General, and Cosmological, 2nd ed., Oxford University Press, Oxford – New York, p. 221 (2006).
[16] G. Aad et. al., “Observation of a New Particle in the Search for the Standard Model Higgs Boson with the ATLAS Detector at the LHC,” Phys. Lett. B, 716, 1, pp 1-29 (2012).
[17] B. Haisch, A. Rueda and H.E. Puthoff, “Inertia as a Zero-Point Lorentz Force,” Phys. Rev. A, 49, 2, pp 678-694 (1994).
[18] B. Haisch, A. Rueda and Y. Dobyns, “Inertial Mass and the Quantum Vacuum Fields,” Ann. Phys., 10, 5, pp292-414 (2001).
[19] A. Rueda, B. Haisch, “Gravity and the Quantum Vacuum Inertia Hypothesis,” Ann. Phys., 14, 8, pp. 479-498 (2005).
[20] J. Bodenner and C. Will., “Deflection of Light to Second Order: A Tool for Illustrating Principles of General Relativity,” Am. J. Phys., 71, 8 (2003).
[21] Kopeikin, S.M. and Makarov, V.V., "Gravitational Bending of Light by Planetary Multipoles and its Measurement with Microarcsecond Astronomical Interferometers," Phys. Rev. D, 75, 6, p. 062002 (2007).
[22] Maccone, C., “Space Missions Outside the Solar System to Exploit the Gravitational Lens of the Sun,” J. Brit. Interplanetary Soc., 47, 2, pp. 45-52 (1994).
[23] D.F. Mota and D.J. Shaw, “Evading Equivalence Principle Violations, Cosmological and other Experimental Constraints in Scalar Field Theories with a Strong Coupling to Matter,” Phys. Rev. D, 75, 063501 (2007).