# Advances in Astrophysics

### Noether Symmetries and Conserved Quantities of f(R) Cosmology Models Containing Time Transformation

Download PDF (393.9 KB) PP. 93 - 105 Pub. Date: August 1, 2016

### Author(s)

**Jing-Li Fu**^{*}

Institute of Mathematical Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China**Yong-Xin Guo**

Department of Physics, Liaoning University, Shenyang 110036, China

### Abstract

### Keywords

### References

[1] S. Capozziello, M. De Laurentis, S. Nojiri, and S. D. Odintsov. “Classifying and avoiding singularities in the alternative gravity dark energy models.” Physical. review. D, vol.79, no.12, pp. 320-330, 2009

[2] S. Nojiri and S.D. Odintsov, “Introduction to modified gravity and gravitational alternative for dark energy” Int. J. Geom. Methods Mod. Phys. Vol.4,no.1,pp.115-145, 2007

[3] S. Nojiri and S. D. Odintsov. “Effective equation of state and energy conditions in phantom/tachyon inflationary cosmology perturbed by quantum effects,” Physics Letters B,vol.571,no.1-2,pp. 1-10,

[4] S. Nojiri and S.D. Odintsov,” Unified cosmic history in modified gravity: from F(R) theory to Lorentz noninvariant models, Physics Reports, vol. 505,no.2-4,pp. 59–144, 2010

[5] N.V. Dan “1/R Curvature Corrections as the Source of the Cosmological Acceleration”,Phys. Rev. D,vol. 68 ,no.6, pp. 484-504, 2003 .

[6] E.E. Flanagan, “Palatini Form of 1/R Gravity”Phys. Rev. Lett. vol. 92, no.7,pp. 2835-2842, 2004

[7] T.P. Sotiriou, S. Liberati, “Metric-affine f(R) theories of gravity,” Ann. Phys. vol.322, no.4,pp.935-966,2007

[8] P.J. Olver, “Applications of Lie Groups to Differential Equations,”Springer, New York, 1993.

[9] L.V. Ovisiannikov, “Group Analysis of Difference Equations”, Academic, New York,1982

[10] N.H. Ibragimov, “Transformation Groups Applied to Mathematical Physics”, Reidel, Boston, 1985.

[11] G.W. Bluman, S. Kumei, “Symmetries of Differential Equations”, Springer, Berlin, 1989.

[12] F.X. Mei, “Applications of Lie Group and Lie Algebra to Constraint Mechanical Systems,” Science Press, Beijing, 1999 (in Chinese)

[13] J.L. Fu, L.Q. Chen, “Non-Noether symmetries and conserved quantities of nonconservative dynamical systems,”Phys. Lett. A , vol.317 ,no. 3-4, 255-259, 2003

[14] J.L. Fu, L.Q. Chen, J. Salvador, Y.F. T ang, “Non-Noether symmetries and Lutzky conserved quantities for mechanico-electrical systems,”Phys. Lett. A,vol. 358, no.1,pp. 5-10, 2006

[15] J.L. Fu, L.Q. Chen and B.Y. Chen. “Noether-type theorem for discrete nonconservative dynamical systems with nonregular lattices,” Sci. China: Phys. Mech. & Astron. Vol. 53,no.3, pp.545-554, 2010

[16] U. Camci and Y. Kucukakca.” Noether symmetries of Bianchi I, Bianchi III, and Kantowski-Sachs spacetimes in scalar-coupled gravity theories,” Phys. Rev. D, vol 76, no.76, pp. 366-367

[17] A. K. Sanyal,B. Modak, C. Rubano , E. Piedipalumbo. “Noether symmetry in the higher order gravity theory,”Gen. Relativ. Gravit. Vol. 37 ,no.2, pp. :407-417 , 2005

[18] S. Capozziello, A. Stabile and A. Troisi. “Spherically symmetric solutions in f(R) gravity via the Noether symmetry approach.” Class. Quantum Grav. vol.24,no.8,pp. 2153-2166 ,2007

[19] B. Vakili. “Noether symmetry in f(R) cosmology,”Phys. Lett. B, vol. 664,no. 1-2,pp. 16–20, 2008

[20] B. Vakili. “Noether symmetric f(R) quantum cosmology and its classical correlations,” Phys. Lett. B, vol.669 ,no.3-4,pp. 206-211, 2008

[21] S. Capozziello, G. Lambiase, “Selection Rules in Minisuperspace Quantum Cosmology,”Gen. Relativ. Gravit, vol. 32,no.4,pp. 673-696,2000

[22] M. Rosha and Shojai F., “Palatini [formula omitted] cosmology and Noether symmetry,”Phys. Lett. B, vol. 668,no.3, pp. 238-240, 2008