Isaac Scientific Publishing

Advances in Astrophysics

Modified Korteweg-de Vries (mK-dV) Equation Describing Dust-ion-acoustic Solitary Waves in an Unmagnetized Dusty Plasma with Trapped Negative Ions

Download PDF (546.1 KB) PP. 161 - 172 Pub. Date: November 1, 2016

DOI: 10.22606/adap.2016.13003

Author(s)

  • Obaydur Rahman*
    Department of Physics, Mawlana Bhashani Science and Technology University, Santosh, Tangail, Bangladesh
  • Md. Masum Haider
    Department of Physics, Mawlana Bhashani Science and Technology University, Santosh, Tangail, Bangladesh

Abstract

The effects of vortex-like (trapped) negative ion, Maxwellians electron, arbitrarily charged stationary dust, and cold mobile inertial positive ion have been theoretically investigated in the study of nonlinear propagation of dust-ion-acoustic (DIA) solitary waves (SWs) in an unmagnetized dusty electronegative plasma (DENP). The properties of small but finite amplitude DIASWs are studied by employing the reductive perturbation technique (RPT). It has been found that owing to the departure from the Maxwellian negative ion distribution to a vortex-like one, the dynamics of such DIASWs is governed by a modified Korteweg-de Vries (mK-dV) equation which admits solitary wave solution under certain conditions. The basic properties (speed, amplitude, width, etc.) of such DIASWs are found to be significantly modified by the effects of trapped negative ions and arbitrarily charged stationary dust particles. The results should be useful for understanding the nonlinear propagation of DIASWs in laboratory and space plasmas (e.g., Earth’s magnetosphere, auroral region, heliospheric environments etc.).

Keywords

Dust-ion-acoustic waves, solitary waves, electronegative dusty plasma, trapped negative ions.

References

[1] S. V. Berezhnoj, U. Buddemeier, I. Kaganovich and C. B. Shin, “Charged species profiles in oxygen plasm”, Applied Physics Letters, vol. 77, pp. 800-802, 2000.

[2] R. N. Franklin, “Electronegative plasmas-why are they so different?”, Plasma Sources Science and Technology, vol. 11, pp. A31-A37, 2002.

[3] T. Kimura, K. Inagaki and K. Ohe, “The spatial profiles of charged particles in a multipolar magnetically confined Ar- O2 plasma”, Journal of Physics D, vol. 31, pp. 2295-2304, 1998.

[4] D. Vender, W. W. Stoffels, E. Stoffels, G. M. W. Kroesen and F. J. de Hoog, “Charged-species profiles in electronegative radio-frequency plasmas”, Physical Review E, vol. 51, pp. 2436-2444, 1995.

[5] G. O. Ludwig, J. L. Ferreira and Y. Nakamura, “Observation of ion-acoustic rarefaction solitons in a multicomponent plasma with negative ions”, Physical Review Letters, vol. 52, pp. 275-278, 1984.

[6] B. Song, D. Suszcynsky, N. D’Angelo and R. L. Merlino, “Electrostatic ion-cyclotron waves in a plasma with negative ions”, Physics of Fluids B, vol. 1, pp. 2316-2318, 1989.

[7] T. Intrator, N. Herskowitz and R. Stern, “Beamplasma interactions in a positive ion - negative ion plasma”, Physics of Fluids, vol. 26, pp. 1942-1948, 1983.

[8] J. A. Johnson III and R. Ramaiah, “Plasma instability in the presence of negative ions”, Physics Review A, vol. 36, pp. 774-794, 1987.

[9] N. Plihon, C. S. Corr and P. Chabert, “Double layer formation in the expanding region of an inductively coupled electronegative plasma”, Applied Physics Letters, vol. 86, pp. 091501-3, 2005.

[10] S. H. Kim and R. L. Merlino, “Charging of dust grains in a plasma with negative ions”, Physics of Plasmas, vol. 13, pp. 052118, 2006.

[11] W. M. Moslem and P. K. Shukla, “Ion thermal double layers in a pair-ion plasma containing charged dust impurities”, Physics Letters A, vol. 362, pp. 463-467, 2007.

[12] S. Ali, W. M. Moslem and P. K. Shukla, “Wake potential with mobile positive/negative ions in multicomponent dusty plasmas”, Physics of Plasmas, vol. 372, pp. 6650-6652, 2008.

[13] H. Kokura, S. Yoneda, K. Nakamura, N. Mitsuhira, M. Nakamura and H. Sugai, “Diagnostic of surface wave plasma for oxide etching in comparison with inductive rf plasma”, Japanese Journal of Applied Physics, vol. 38, pp. 5256-5261, 1999.

[14] L. Boufendi and A. Bouchoule, “Industrial developments of scientific insights in dusty plasmas”, Plasma Sources Science and Technology, vol. 11, pp. A211-A218, 2002.

[15] M. A. Lieberman and A. J. Lichtenberg, “Principle of Plasma Discharges and Materials Processing”, 2nd ed. Wiley, New York, 2005.

[16] J. H. Chu, J. B. Du and I. Lin, “Coulomb solids and low-frequency fluctuations in rf dusty plasmas”, Journal of Physics D: Applied Physics, vol. 27, pp. 296-300, 1994.

[17] J. H. Chu and I. Lin, “Direct observation of coulomb crystals and liquids in strongly coupled rf dusty plasmas”, Physical Review Letters, vol. 72, pp. 4009-4012, 1994.

[18] H. Thomas, G. E. Morfill, V. Dammel, J. Goree, B. Feuerbacher and D. M?hlmann, “Plasma crystal: coulomb crystallization in a dusty plasma”, Physical Review Letters, vol. 73, pp. 652-655, 1994.

[19] P. K. Shukla and B. Eliasson, “Colloquium: Fundamentals of dust-plasma interactions”, Reviews of Modern Physics, vol. 81, pp. 25-44, 2009.

[20] A. A. Mamun, R. A. Cairns and P. K. Shukla, “Dust negative ion acoustic shock waves in a dusty multi-ion plasma”, Physics Lettets A, vol. 373, pp. 2355-2359, 2009.

[21] M. Rosenberg and R. L. Merlino, “Ion-acoustic instability in a dusty negative ion plasma”, Planetary and Space Science, vol. 55, pp. 1464-1469, 2007.

[22] R. L. Merlino and S. H. Kim, “Charge neutralization of dust particles in a plasma with negative ions”, Applied Physics Letters, vol. 89, pp. 091501-091502, 2006.

[23] B. M. Annaratone and J. E. Allen, “A note on the potential acquired by a dust particle in an electronegative plasma”, Journal of Physics D: Applied Physics, vol. 38, pp. 26-28, 2005.

[24] B. M. Annaratone, T. Antonova, H. M. Thomas and G. E. Morfill, “Diagnostics of the electronegative plasma sheath at low pressures using microparticles”, Physics Review Letter, vol. 93, pp. 185001, 2004.

[25] N. D’Angelo, “Low-frequency waves in collisional positive dust plasmas”, Journal of Physics D: Applied Physics, vol. 37, pp. 860-862, 2004.

[26] A. A. Mamun and P. K. Shukla, “Charging of dust grains in a plasma with negative ions”, Physics of Plasmas, vol. 10, pp. 1518-1520, 2003.

[27] P. K. Shukla and A. A. Mamun, “Introduction to dusty plasma physics”, 2002.

[28] F. Verheest, “Waves in dusty space plasmas”, 2000.

[29] G. E. Morfill and A. V. Ivlev, “Complex plasmas: An interdisciplinary research field”, Reviews of Modern Physics, vol. 81, pp. 1353-1404, 2009.

[30] S. E. Cousens, S. Sultana, I. Kourakis, V. V. Yaroshenko, F. Verheest, and M. A. Hellberg, “Nonlinear dust-acoustic solitary waves in strongly coupled dusty plasmas”, Physical Review E, vol. 86, pp. 066404-066414, 2012.

[31] S. K. El-Labany and W. F. El-Taibany, “Effect of dust-charge variation on dust acoustic solitary waves in a dusty plasma with trapped electrons”, Journal of Plasma Physics, vol. 70, pp. 69-87, 2004.

[32] E. A. Bogdanov and A. A. Kudryavtsev, “The conditions for realization of the Boltzmann distribution of negative ions in a plasma”, Technical Physics Letters, vol. 27, pp. 905-907, 2001.

[33] R. N. Franklin and J. Snell, “The Boltzmann relation in electronegative plasmas: When is it permissible to use it?”, Journal of Plasma Physics, vol. 64, pp. 131-153, 2000.

[34] A. J. Lichtenberg, I. G. Kouznetsov, Y. T. Lee, M. A. Lieberman, I. D. Kaganovich and L. D. Tsendin, “Modelling plasma discharges at high electronegativity”, Plasma Sources Science and Technology, vol. 6, pp. 437-449, 1997.

[35] Y. Ghim, S. H. Kim and N. Hershkowitz, “Experimental verification of Boltzmann equilibrium for negative ions in weakly collisional electronegative plasmas”, Applied Physics Letters, vol. 94, pp. 151503-151900, 2009.

[36] I. Kourakis and P. K. Shukla, “Lagrangian description of nonlinear dust ion acoustic waves in dusty plasmas”, European Physical Journal D, vol. 30, pp. 97-103, 2004.

[37] M. G. M. Anowar and A. A. Mamun, “Multi-dimensional instability of dust-ion-acoustic solitary waves in a multi-ion dusty plasma”, Journal Plasma Physics, vol. 75, pp. 475-493, 2009.

[38] W. M. Moslem and W. F. El-Taibany, “Effect of two-temperature trapped electrons to nonlinear dust-ionacoustic solitons”, Physics of Plasmas, vol. 12, pp. 122309-7, 2005.

[39] A. A. Mamun P. K. Shukla and B. Eliasson, “Solitary waves and double layers in a dusty electronegative plasma”, Physics Review E, vol. 80, pp. 046406-6, 2009.

[40] A. A. Mamun, P. K. Shukla and B. Eliasson, “Arbitrary amplitude dust ion-acoustic shock waves in a dusty plasma with positive and negative ions”, Physics of Plasmas, vol. 16, pp. 114503, 2009.

[41] C. Lin and M. M. Lin, “Analytical study of the dust acoustic waves in a magnetized dusty plasma with many different dust grains”, Advanced Studies in Theoretical Physics, vol. 1, pp. 563-570, 2007.

[42] C. Lin, W. G. Feng and M. M. Lin, “Communications in nonlinear science and numerical simulation”, New York, USA: Elsevier, vol. 13, 2008.

[43] A. A. Mamun, “Compressive and rarefactive dust-acoustic solitary struc-tures in a magnetized two-iontemperature dusty plasma”, Astrophysics and Space Science, vol. 260, pp. 507-514, 1999.

[44] A. A. Mamun, “Coexistence of positive and negative solitary potential structures in dusty plasma”, Physics Letter A, vol. 372, pp. 686-689, 2008.

[45] X. D. Du, K. Toi, M. Osakabe, S. Ohdachi, T. Ido, K. Tanaka, M. Yokoyama, M. Yoshinuma, K. Ogawa, K. Y. Watanabe, M. Isobe, K. Nagaoka, T. Ozaki, S. Sakakibara, R. Seki, A. Shimizu, Y. Suzuki, H. Tsuchiya, and LHD Experiment Group, “Resistive interchange modes destabilized by helically trapped energetic ions in a helical plasma”, Physics Review Letter, vol. 114, pp. 155003, 2015.

[46] H. Schamel, “Stationary solitary, snoidal and sinusoidal ion acoustic waves”, Plasma Physics, vol. 14, pp. 905-924, 1972.

[47] H. Schamel, “Analytic BGK modes and their modulational instability”, Journal of Plasma Physics, vol. 13, pp. 139-145, 1975.

[48] H. Schamel, “Electron holes, ion holes and double layers”, Physics Reports, vol. 140, pp. 161-191, 1986.

[49] H. Schamel, “Hole equilibria in Vlasov-Poisson systems: A challenge to wave theories of ideal plasmas”, Physics of Plasmas, vol. 7, pp. 4831-4844, 2000.

[50] D. Winske, S. P. Gary, M. E. Jones, M. Rosenberg, V. W. Chow and D. A. Mendis, “Ion heating in a dusty plasma due to the dust/ion acoustic instability”, Geophysical Research Letters, vol. 22, pp. 2069-2072, 1995.

[51] Z. J. Zhou, H. Y. Wang and K. B. Zhang, “Dust-acoustic solitary waves in a dusty plasma with two-temperature nonthermal ions”, Pramana Journal of Physics, vol. 78, pp. 127-133, 2012.

[52] D. K. Ghosh, P. Chatterjee, P. K. Mandal and B. Sahu, “Nonplanar ion-acoustic shocks in electron?- positron?ion plasmas: Effect of superthermal electrons”,Pramana Journal of Physics, vol. 81, pp. 491-501, 2013.

[53] H. Schamel, “A modified Korteweg-de Vries equation for ion acoustic waves due to resonant electrons”, Journal of Plasma Physics, vol. 9, pp. 377-387, 1973.

[54] A. A. Mamun, R. A. Cairns and P. K. Shukla, “Effects of vortex-like and nonthermal ion distributions on nonlinear dust-acoustic waves”, Physics of Plasmas, vol. 3, pp. 2610-2614, 1996.

[55] A. A. Mamun, “Solitary waves in a three-component dusty plasma with trapped ions”, Physica Scripta, vol. 57, pp. 258-260, 1998.

[56] S. K. El-Labany, W. F. El-Taibany, A. A. Mamun and W. M. Moslem, “Dust acoustic solitary waves and double layers in a dusty plasma with two-temperature trapped ions”, Physics of Plasmas, vol. 11, pp. 926-933, 2004.

[57] M. G. M. Anowar and A. A. Mamun, “Effects of two-temperature electrons and trapped ions on multidimensional instability of dust-acoustic solitary waves”, IEEE Transactions on Plasma Science, vol. 37, pp. 1638-1645, 2009.

[58] M. G. M. Anowar, M. S. Rahman and A. A. Mamun, “Nonlinear dust-acoustic waves in a strongly coupled dusty plasma with vortexlike ion distribution”, Physics of Plasmas, vol. 16, pp. 053704-5, 2009.

[59] O. Rahman and A. A. Mamun, “Dust-ion-acoustic solitary waves in dusty plasma with arbitrarily charged dust and vortex-like electron distribution”, Physics of Plasmas, vol. 18, pp. 083703-5, 2011.

[60] A. A. Mamun, “Nonlinear propagation of dust-acoustic waves in magnetized a dusty plasma with vortex-like ion distribution”, Journal of Plasma Physics, vol. 59, pp. 575-580, 1998.

[61] H. Schamel and S. Bujarbarua, “Solitary plasma hole via ion-vortex distribution”, Physics of Fluids, vol. 23, pp. 2498-2499, 1980.

[62] A. A. Mamun, B. Eliasson and P. K. Shukla, “Dust-acoustic solitary and shock waves in a strongly coupled liquid state dusty plasma with a vortex-like ion distribution”, Physics Letter A, vol. 332, pp. 412-416, 2004.

[63] H. Washimi and T. Taniuti, “Propagation of ion-acoustic solitary waves of small amplitude”, Physics Review Letter, vol. 17, pp. 996-997, 1966.

[64] A. A. Mamun, P. K. Shukla and L. Stenflo,“Obliquely propagating electron-acoustic solitary waves”, Physics of Plasmas, vol. 9, pp. 1474-1477, 2002.

[65] A. A. Mamun, “Nonlinear propagation of ion-acoustic waves in a hot magnetized plasma with vortexlike electron distribution”, Physics of Plasmas, vol. 5, pp. 322-324, 1998.

[66] X. Qi, Y. X. Xu, W. S. Duan and L. Yang, “The application scope of the reductive perturbation method and the upper limit of the dust acoustic solitary waves in a dusty plasma”, Physics of Plasmas, vol. 21, pp. 013702-7, 2014.

[67] T. Taniuti and C. Wei, “Reductive perturbation method in nonlinear wave propagation I”, Journal of the Physical Society of Japan, vol. 24, pp. 941-946, 1968.

[68] C. H. Su and C. S. Gardner, “Korteweg-de Vries Equation and Generalizations. III. Derivation of the Korteweg-de Vries Equation and Burgers Equation”, Journal of Mathematical Physics, vol. 10, pp. 536-538, 1969.

[69] A. Barkan, N. D?Angelo and R. L. Merlino, “Experiment on ion-acoustic waves in dusty plasmas”, Planetary and Space Science, vol. 44, pp. 239-242, 1996.

[70] X. Liang, J. Zheng, J. X. Ma, W. D. Liu, J. Xie, G. Zhuang and C. X. Yu, “Experimental observation of ion-acoustic waves in an inhomogeneous dusty plasma”, Physics of Plasmas, vol. 8, pp. 1459-1462, 2001.

[71] M. M. Haider1, T. Ferdous and S. S. Duha, “Instability due to trapped electrons in magnetized multi-ion dusty plasmas”, Journal of Theoretical and Applied Physics, vol. 9, pp. 159-166, 2015.

[72] C. Gardner, J. Greene, M. Kruskal and R. Miura, “Method for solving the Korteweg-de Vries equation”, Physical Review Letters, vol. 19, pp. 1095- 1097, 1967.

[73] A. M. Wazwaz, “New solitons and kink solutions for the Gardner equation”, Communications in Nonlinear Science and Numerical Simulation, vol. 12, pp. 1395-1404, 2007.

[74] A. A. Mamun and S. Islam, “Nonplanar dust-ion-acoustic double layers in a dusty nonthermal plasma”, Journal of Geophysical Research, vol. 116, pp. A12323-6, 2011.

[75] B. B. Kadomtsev and V. I. Petviashvili, “On the stability of solitary waves in weakly dispersive media”, Soviet Physics Doklady, vol. 15, pp. 539-541, 1970.

[76] A. M. Wazwaz, “Solitons and singular solitons for the Gardner-KP equation”, Applied Mathematics and Computation, vol. 204, pp. 162-169, 2008.

[77] P. E. Zhidkov, “Korteweg-de Vries and nonlinear Schrodinger’s equations: qualitative theory”, Springer Verlag New York, NY. 2001.

[78] M. G. M. Anowar and A. A. Mamun, “Multidimensional instability of electron-acoustic solitary waves in a magnetized plasma with vortex-like electron distribution”, Physics of Plasmas, vol. 15, pp. 102111-6, 2008.

[79] C. K. Goertz, “Dusty plasmas in the solar system”, Reviews of Geophysics, vol. 27, pp. 271-292, 1989.

[80] D. A. Mendis and M. Rosenberg, “Cosmic dusty plasma”, Annual Review of Astronomy and Astrophysics, vol. 32, pp. 419-463, 1994.

[81] R. L. Merlino and J. Goree, “Dusty plasmas in the laboratory, industry, and space”, Physics Today, vol. 57, pp. 32-38, 2004.