Isaac Scientific Publishing

Advances in Astrophysics

Propagation of Electrostatic Solitary Wave Structures in Dense Astrophysical Plasma: Effects of Relativistic Drifts & Relativistic Degeneracy Pressure

Download PDF (620.4 KB) PP. 187 - 200 Pub. Date: November 1, 2016

DOI: 10.22606/adap.2016.13005

Author(s)

  • Swarniv Chandra*
    Department of Physics, JIS University, Kolkata-700109, India

Abstract

Analytical and numerical studies are presented for electron acoustic solitary wave structure in relativistic degenerate two-component unmagnetized astrophysical plasma. The existence of a wave mode of pure quantum origin is predicted. The effect of various plasma parameters on the conditions of existence and properties of solitary wave is investigated. It is shown that depending on the values of plasma parameters both rarefactive and compressive type of solitons can exist. It is observed that the amplitude and width of the solitons are significantly affected by the quantum and relativistic effects. The relativistic effects arising out of streaming motion is treated by Eulerean formulation whereas the relativistic degeneracy effects is investigated by making use of Chandrasekhar formula.

Keywords

Quantum plasmas, astrophysical plasma, relativistic degeneracy, quantum diffraction, solitary structures, quantum hydrodynamic model.

References

[1] G. Manfredi, “How to model quantum plasmas” Fields Institute Communications, vol. 46, 263, 2005.

[2] M. Opher, L. O. Silva, D. E. Dauger, V. K. Decyk and J. M. Dawson, “Nuclear reaction rates and energy in stellar plasmas: The effect of highly damped modes” Physics of Plasmas, vol. 8, 2454, 2001.

[3] A. Markowich, C. Ringhofer and C. Schmeiser, Semiconductor Equations, Springer, Vienna, 1990.

[4] K. F. Berggren and Z.-L.Ji, “Quantum chaos in nano-sized billiards in layered two-dimensional semiconductor structures”, Chaos, vol. 6, 543, 1996.

[5] W. L. Barnes, A. Dereux and T. W. Ebbesen, “Surface plasmon subwavelength optics” Nature (London), vol. 424, 824, 2003.

[6] T. C. Killian, “Cool Vibes”, Nature (London) vol.441, 297, 2006.

[7] G. Chabrier, F. Douchin and A. Y. Potekhin, “Dense astrophysical plasmas” Journal of Physics: Condensed Matter , vol.14 9133, 2002.

[8] K. H. Becker, K. H. Schoenbach and J. G. Eden, “Microplasmas and applications”, Journal of Physics D: Applied Physics, vol. 39, R55, 2006.

[9] L. K. Ang, W. S. Koh, Y. Y. Lau and T. J. T. Kwan, “Space-charge-limited flows in the quantum regime”, Physics of Plasmas, vol. 13 056701, 2006.

[10] L. K. Ang and P. Zhang, “Ultrashort-Pulse Child-Langmuir Law in the Quantum and Relativistic Regimes”, Physical Review Letters, vol. 98, 164802, 2007.

[11] C. Grabbe, “Wave propagation effects of broadband electrostatic noise in the magnetotail”, Journal of Geophysical Research, vol. 94, 17299, 1989 .

[12] J. I. Vette, Summary of Particle Population in the Magnetosphere , Reidel, Dordrecht, p. 305, 1989.

[13] H. Ikezi, “Experiments on ion‐acoustic solitary waves”, Physics of Fluids, vol. 16, 1668, 1973.

[14] B. Shen and J. Meyer-ter-Vehn, “Pair and γ-photon production from a thin foil confined by two laser pulses”, Physical Review E, vol. 65, 016405, 2001.

[15] E. P. Liang, S. C. Wilks, and M. Tabak, “Pair Production by Ultraintense Lasers”, Physical Review Letters, vol. 81, 4887, 1998.

[16] K. A. Holcomb, T.Tajima, “General-Relativistic Plasma Physics in the Early Universe”, Physical Review D, vol. 40, 3809, 1989.

[17] R. Saeed, A. Shah , M. N. Ha, “Nonlinear Korteweg–de Vries equation for soliton propagation in relativistic electron-positron-ion plasma with thermal ions”, Physics of Plasmas, vol. 17, 102301, 2010.

[18] S. K. El-Labany, M.S. Abdel Krim, S.A. El-Warraki, W.F. El-Taibany, “Modulational instability of a weakly relativistic ion acoustic wave in a warm plasma with nonthermal electrons”, Chinese Physics, vol.12, 759, 2003 .

[19] R. Bharuthram , M.Y.Yu, “Relativistic electron plasma waves”, Astrophysics and Space Sciences, vol. 207, 197, 1993.

[20] S. I. Shapiro, S.A.Teukolsky, Black Holes, White Dwarfs and Neutron Stars, John Wiley & sons, New York, 1983.

[21] M. Marklund, P.K.Shukla, “Kinetic theory of electromagnetic ion waves in relativistic plasmas”Review of Modern Physics, vol. 78, 591, 2006 .

[22] F. Haas, L. G. Garcia, J. Goedert, and G. Manfredi, “Quantum ion-acoustic waves” Physics of Plasmas, vol. 10, 3858, 2003 .

[23] L.S. Stenflo, P.K. Shukla and M. Marklund, “New low-frequency oscillations in quantum dusty plasmas”, Europhysics Letters, vol. 74, no. 5, 844, 2006.

[24] C.L. Gardner and C. Ringhofer, “Smooth quantum potential for the hydrodynamic model” Physical Review E, vol. 53,157, 1996.

[25] P. K. Shukla and B. Eliasson, “Formation and Dynamics of Dark Solitons and Vortices in Quantum Electron Plasmas”, Physical Review Letters, vol. 96, 245001, 2006.

[26] S. A. Khan and A. Mushtaq, “Linear and nonlinear dust ion acoustic waves in ultracold quantum dusty plasmas”, Physics of Plasmas, vol. 14, 083703, 2007.

[27] B. Sahu and R. Roychoudhury, “Cylindrical and spherical quantum ion acoustic waves” Physics of Plasmas, vol.14, 012304, 2007.

[28] B. Sahu and R. Roychoudhury, “Electron acoustic solitons in a relativistic plasma with nonthermal electrons”, Physics of Plasmas, vol. 13, 072302, 2006.

[29] S. Ali and P. K. Shukla, “Dust acoustic solitary waves in a quantum plasma”, Physics of Plasmas, vol. 13, 022313, 2006.

[30] P. K. Shukla and S. Ali, “Dust acoustic waves in quantum plasmas”, Physics of Plasmas, vol.12, 114502, 2005.

[31] B. Ghosh, S. Chandra & S.N.Paul, “Amplitude modulation of electron plasma waves in a quantum plasma”, Physics of Plasmas, vol. 18, 012106, 2011.