Advances in Astrophysics
Numerical Simulations of the Evolution of Solar Active Regions: the Complex AR12565 and AR12567
Download PDF (3573.4 KB) PP. 103 - 116 Pub. Date: May 1, 2017
Author(s)
- Cristiana Dumitrache*
Astronomical Institute of Romanian Academy, Str. Cutitul de Argint 5, 040557 Bucharest, Romania
Abstract
Keywords
References
[1] Stein, R.F.; Nordlund, A., "On the formation of active regions", The Astrophysical Journal Letters, vol. 753, no. 1, pp. L13–L14, 2012.
[2] Bumba, V., and Robert Howard, "A Study of the Development of Active Regions on the Sun", Astrophys. J. , vol. 141, 1492–1501, 1965.
[3] Roberts, B.; Webb, A. R., "Vertical motions in an intense magnetic flux tube", Solar Phys. , vol. 56, p.5–35, 1978.
[4] Spruit, H. C., "A cluster model for sunspots", in The Physics of Sunspots, Cram, L. E. and Thomas, J. H.(eds), p.98–103, 1981.
[5] D’Silva, S. and Choudhuri, A. R., "A theoretical model for tilts of bipolar magnetic regions", Astron. Astrophys. , vol. 272, 621-633, 1993.
[6] CCaligari, P. and Moreno-Insertis, F. and Schussler, M., "Emerging flux tubes in the solar convection zone. 1: Asymmetry, tilt, and emergence latitude", Astrophys. J. , vol.441, p.886–902, 1995.
[7] Cheung, M. C. M., M. Rempel, and M. Sch??ssler, "Simulation of the formation of a solar active region", Astrophys. J. , vol. 720, no. 1, pp. 233–244, 2010.
[8] Fan, Y. and Gibson, S. E., "Numerical simulations of three-dimensional coronal magnetic fields resulting from the emergence of twisted magnetic flux tubes", Astrophys. J. , vol. 609, no. 2, pp. 1123-1133, 2004.
[9] Jiang, C., Wu, S.T., Feng, X. and Hu, Q., "Data-driven magnetohydrodynamic modelling of a flux-emerging active region leading to solar eruption", Nature communications, 7, 2016.
[10] Inoue, S., "Magnetohydrodynamics modeling of coronal magnetic field and solar eruptions based on the photospheric magnetic field", Progress in Earth and Planetary Science, vol. 3(1), pp. 1–28, 2016.
[11] Dumitrache, C, "Numerical simulations of an active region starting with a real magnetogram as initial conditions", Romanian Astron. J. , vol. 25, pp. 31–45, 2015
[12] Lee, J.K., "Coronal Loop Identification", Master Thesis, University of Alabama in Huntsville, 2002.
[13] Weber, W.J., "The dynamics of coronal magnetic structures: a numerical analysis of coronal magnetic field evolution in the presence of large gradients", PhD Thesis, No.408 Utrecht, 1978.
[14] Forbes, T.G. and Priest, E.R., "Numerical study of line-tied magnetic reconnection", Solar Phys. , vol.81, pp. 303–324, 1982.
[15] Dumitrache C., "Numerical Simulations in a Current Sheet", Romanian Astron. J. , vol. 9, pp. 139–152, 1999.
[16] Mouhamed A., Sonka A., Stere O., Dumitru L., Dumitrache C., "Multiwavelength study of the complex AR2565 and AR2567", in preparation 2016.
[17] Boris, J. P. and Book, D. L., 1976, "Flux-corrected transport III: Minimal-error FCT algorithms", J.Comput.Phys., vol.20, pp. 397–431.
[18] Boris, J. P., Book, D. L. and Hain, K., 1975, "Flux-corrected transport II: Generalizations of the method", J.Comput.Phys., vol.18, pp. 248–283.
[19] http://medoc-sdo.ias.u-psud.fr/sitools/client-user/IAS_SDO_DATA/project-index.html
[20] http://sidc.oma.be/cactus/catalog/LASCO/2_5_0/qkl/2016/07/CME0017/CME.html
[21] https://www.solarmonitor.org/full_disk.php?date=20160717&type=shmi_maglc&indexnum=1
[22] https://www.solarmonitor.org