Isaac Scientific Publishing

Advances in Astrophysics

Plausible Intermediate Mass Black Hole from M82X-2 X-Ray Pulsations

Download PDF (5484.6 KB) PP. 162 - 183 Pub. Date: August 18, 2017

DOI: 10.22606/adap.2017.23003

Author(s)

  • Gagik Ter-Kazarian*
    Phys. Dept.College of Science, SQU, POBox 36, Postal Code 123, Al-Khoud, OMAN
  • Saleh Al Shidhani
    Phys. Dept.College of Science, SQU, POBox 36, Postal Code 123, Al-Khoud, OMAN

Abstract

Recently observed rare mighty X-ray coherent pulsations coming from M82X-2 impose a significant challenge in breaking the Eddington limit. Alternative approach to circumvent the obstacles was studied in [1,2] by addressing the M82X-2 as a spinning intermediate mass black hole, resided in final stage of growth. This approach employs the microscopic theory of black hole (MTBH), which explores a spontaneous breaking of gravitation gauge symmetry at huge energies. The preceding developments of this theory are proved to be quite fruitful for addressing the growth and merging phenomena of the black hole seeds. It explains as well the origin of ZeV-neutrinos, which are of vital interest for the source of ultra-high energy particles. In the present work, we further expose the assertions made in previous model via a computation of essential astrophysical corrections introduced by the rotation to the characteristic phase profile of M82X-2.

Keywords

Black hole physics; accretion: accretion discs; X-rays: binaries; X-rays: individual (NuSTAR J095551+6940.8).

References

[1] G. Ter-Kazarian, "On the Physical Nature of the Source of Ultraluminous X-ray Pulsations", Astrophys. & Space Sci., vol. 361, issue 1, pp.20, DOI 10.1007/s10509-015-2604-0, 2016.

[2] G. Ter-Kazarian, "Rotating black holes in microscopic theory: the implications for periodic source M82X-2", Advances in Astrophys., Vol.1, issue 3, pp.21, 2016.

[3] H. Feng & R. Soria, "Ultraluminous X-ray sources in the Chandra and XMM-Newton era", New Astron. Rev., vol. 55, Issue 5, pp. 166-183, 2011..

[4] J.-F. Liu, J.N. Bregman, Y. Bai, S. Justham & F. Crowther, "Puzzling accretion onto a black hole in the ultraluminous X-ray source M 101 ULX-1", Nature, vol. 503, Issue 7477, pp. 500-503, 2013.

[5] D.R. Pasham, T.E. Strohmayer & R.F. Mushotzky, "A 400-solar-mass black hole in the galaxy M82", Nature, vol. 513, Issue 7516, pp. 74-76, 2014.

[6] J. Poutanen, G. Lipunova, S. Fabrika, A.G. Butkevich, & P. Abolmasov, Mon. Not. of Roy. Astron. Soc., vol. 377, Issue 3, pp. 1187-1194, 2007.

[7] N. McCrady, A.M. Gilbert & J.R. Graham, "Kinematic Masses of Super-Star Clusters in M82 from High- Resolution Near-Infrared Spectroscopy", Astrophys. J., vol. 596, Issue 1, pp. 240-252, 2003.

[8] M. Bachetti et al. (24 authors), "An ultraluminous X-ray source powered by an accreting neutron star", Nature, vol. 514, Issue 7521, pp. 202-204, 2014.

[9] G. Wiktorowicz, M. Sobolewska, A. Sadowski, K. Belczynski, "Nature of the Extreme Ultraluminous X-Ray Sources", Astrophysical Journal, vol. 810, Issue 1, article id. 20, 8 pp., 2015.

[10] A.A. Mushtukov, V.F. Suleimanov, S.S. Tsygankov, J. Poutanen, "On the maximum accretion luminosity of magnetized neutron stars: connecting X-ray pulsars and ultraluminous X-ray sources", Mon. Not. of Roy. Astron. Soc., vol. 454, Issue 3, pp.2539-2548, 2015.

[11] D. Simone; P. Rosalba, S. Luigi, "NuSTAR J095551+6940.8: a highly magnetized neutron star with super- Eddington mass accretion", Mon. Not. of Roy. Astron. Soc., vol. 449, Issue 2, pp.2144-2150, 2015.

[12] Y.Y. Pan, L.M. Song, C. M. Zhang, H. Tong, "The magnetic field evolution of ULX NuSTAR J095551+6940.8 in M82a??a legacy of accreting magnetar", [astro-ph.HE]/1510.08597], 2016.

[13] D. Simone, P. Rosalba; P. Alessandro; B. Enrico; S. Luigi, "The accretion regimes of a highly magnetized NS: the unique case of NuSTAR J095551+6940.8", Mon. Not. of Roy. Astron. Soc., vol. 457, Issue 3, pp.3076-3083, 2016.

[14] A. King, J.-P. Lasota, "ULXs: Neutron stars versus black holes", Mon. Not. of Roy. Astron. Soc. Lett., vol. 458, Issue 1, pp.L10-L13, 2016.

[15] G. Ter-Kazarian, "Ultra-high energy neutrino fluxes from supermassive AGN black holes", Astrophys. & Space Sci., vol. 349, pp 919-938, 2014.

[16] G. Ter-Kazarian, "Growth of accreting supermassive black hole seeds and neutrino radiation", J. of Astro- physics, vol. 2015, Article ID 205367, p.1, 2015. http://dx.doi.org/10.1155/2015/205367

[17] E. Treister, P. Natarajan, D. B. Sanders, C. M. Urry, K. Schawinski, and J. Kartaltepe, "Major Galaxy Mergers and the Growth of Supermassive Black Holes in Quasars", Science, vol. 328, pp. 600-602, 2010.

[18] M. Volonteri, G. Lodato, P. Natarajan, "The evolution of massive black hole seeds", Mon. Not. of Roy. Astron. Soc., vol. 383, pp. 1079-1088, 2008.

[19] M. Volonteri, P. Natarajan, "Journey to the MBH-s relation: the fate of low-mass black holes in the Universe", Mon. Not. of Roy. Astron. Soc., vol. 400, pp. 1911-1918, 2009.

[20] P. Natarajan, "The formation and evolution of massive black hole seeds in the early Universe", in it Fluid Flows to Black Holes: A Tribute to S Chandrasekhar on his Birth Centenary. Edited by Saikia D J et al. Published by World Scientific Publishing Co. Pte. Ltd., ISBN #9789814374774, pp. 191-206, 2011.

[21] E. Treister, & C.M. Urry, "The Cosmic History of Black Hole Growth from Deep Multiwavelength Surveys", Advances in Astronomy, vol. 2012, id. 516193, 2012.

[22] A. J. Barger, L. L. Cowie, R. F. Mushotzky, Y. Yang, W.-H. Wang, A. T. Steffen, and P. Capak, "The Cosmic Evolution of Hard X-Ray-selected Active Galactic Nuclei", Astrophys. J., vol. 129, pp. 578-609, 2005.

[23] S. M. Croom, G. T. Richards, T. Shanks, B. J. Boyle, M. A. Strauss, A. D. Myers, R. C. Nichol, K. A. Pimbblet, N. P. Ross, D. P. Schneider, R. G. Sharp, and D. A. Wake, "The 2dF-SDSS LRG and QSO survey: the QSO luminosity function at 0.4 < z < 2.6", Mon. Not. of Roy. Astron. Soc., vol. 399, pp. 1755-1772, 2009.

[24] W. Krivan, P. Laguna, P. Papadopoulos and N. Andersson, "Dynamics of perturbations of rotating black holes", Phys. Rev. D, Vol. 56, Issue 6, pp.3395-3404, 1997; arXiv:9702048[gr-qc]

[25] C.M. Will, Living Rev. Relativity, vol. 17, pp.4, 2014. http://www.livingreviews.org/lrr-2014-4 doi:10.12942/lrr-2014-4; arxiv:1403.7377[gr-qc] 26.

[26] R. A. Hulse & J. H. Taylor, "Discovery of a pulsar in a binary system", Astrophys. J., vol. 195, pp. L51-L53, 1975.

[27] J. H. Taylor & J. M. Weisberg, Astrophys. J., "A new test of general relativity - Gravitational radiation and the binary pulsar PSR 1913+16", vol. 253, pp. 908-920, 1982.

[28] D.Christodoulou & S.-T. Yau, in Isenberg, J.A., ed., Mathematics and General Relativity, Proc. of the AMS- IMS-SIAM Joint Summer Research Conference (1986), vol. 71 of Contemporary Mathematics, 9a??14, (Amer- ican Mathematical Society, Providence, U.S.A., 1988.

[29] L.B. Szabados, Liv. Rev. Relat., "Quasi-Local Energy-Momentum and Angular Momentum in GR: A Review Article", vol. 7, Issue 1, article id.4, pp.140, 2004.; http://www.livingreviews.org/lrr-2004-4

[30] R. Bartnik, in Proc. of the Fifth Marcel Grossmann Meeting on recent developments in theoretical and experimental general relativity, gravitation and relativistic field theories, eds. D.G. Blair and M.J. Buckingham, World Scientific, Singapore; River Edge, U.S.A., pp.399, 1989.

[31] R. Bartnik, "New definition of quasilocal mass", Phys. Rev. Lett., vol. 62, Issue 20, pp.2346-2348, 1989.

[32] S.W. Hawking, J. Math. Phys., "Gravitational Radiation in an Expanding Universe", vol. 9, p.598-604, 1968.

[33] R. Geroch, "Energy Extraction", Ann. N.Y. Acad. Sci., Vol. 224, pp.108, 1973.

[34] R. Penrose, "Quasi-Local Mass and Angular Momentum in General Relativity", Proc. R. Soc. London, Ser. A, vol. 381, Issue 1780, pp. 53-63, 1982.

[35] R. Penrose & W. Rindler, Spinors and space-time, vol. 2: Spinor and twistor methods in space-time geometry, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1986.

[36] A.J. Dougan & L.J. Mason, "Quasilocal mass constructions with positive energy", vol. 67, Issue 16, pp.2119- 2122, 1991.

[37] J.D. Brown & J.M. York, "Microcanonical functional integral for the gravitational field", Phys. Rev. D, vol. 47, Issue 4, pp.1420-1431, 1993.; arXiv:9209012[gr-qc]

[38] S.W. Hawking, "Wormholes in spacetime", Phys. Rev. D, vol. 37, Issue 4,pp.904-910, 1988.

[39] S. Coleman, "Why there is nothing rather than something: A theory of the cosmological constant", vol. 310, Issue 3, p. 643-668, 1988.

[40] T. Dray & G. a??t Hooft, "The gravitational shock wave of a massless particle", Nucl. Phys. B, vol. 253, pp. 173-188, 1985.

[41] T. Dray and G. a??t Hooft, "The effect of spherical shells of matter on the Schwarzschild black hole", Commun. Math. Phys., vol. 99, Issue 4, pp.613-625, 1985.

[42] T.W. Baumgarte, S.L. Shapiro, "General Relativistic Magnetohydrodynamics for the Numerical Construction of Dynamical Spacetimes", Astrophys. J., Volume 585, Issue 2, pp. 921-929, 2003.

[43] S.W.Hawking & G.F.R. Ellis, The large Scale Structure of Space-time, Cambrige University press, Cambrige, England, 1973.

[44] B. Carter, in An Einstein Centenary Survay, ed. S.W. Hawking, W.Israel, p. 294, Cambridge Univ. press, Cambridge, 1979.

[45] J.M. Bardeen, B.Carter, S.W.Hawking, "The four laws of black hole mechanics", vol. 31, Issue 2, pp.161-170, 1973.

[46] J.D.Bekenstein, "Black Holes and Entropy", Phys. Rev. D, vol. 7, Issue 8, pp. 2333-2346, 1973.

[47] J.D.Bekenstein, "Generalized second law of thermodynamics in black-hole physics", Phys. Rev. D, vol. 9, Issue 12, pp. 3292-3300, 1974.

[48] J.D.Bekenstein, "Universal upper bound on the entropy-to-energy ratio for bounded systems", Phys. Rev. D, Volume 23, Issue 2, pp.287-298, 1981.

[49] J.D.Bekenstein, "Black holes and everyday physics", Gen. Relativ. Gravit., vol. 14, pp. 355-359, 1982.

[50] N. D. Birrell & P. C. W. Davies, Quantum Fields in Curved Space, Cambridge Iniv. Press, 1982.

[51] R. Kerner & R. B. Mann, "Fermions tunnelling from black holes", Class. Quant. Grav., vol. 25, Issue 9, id. 095014, 2008.

[52] P.K. Townsend, "Black holes", Lecture notes, 1997; arxiv:9707012[gr-qc].

[53] K. Fredenhagen, "Gravity Induced Noncommutative Spacetime", Rev. in Math. Phys., vol. 7, Issue 04, pp. 559-565, 1995.

[54] S. Carlip, "Near-Horizon Conformal Symmetry and Black Hole Entropy", Phys. Rev. Lett., vol. 88, Issue 24, id. 241301, 2002.

[55] M.I. Park, "The Hamiltonian Dynamics of Bounded Spacetime and Black Hole Entropy: The Canonical Method", Nucl. Phys. B, vol.634, pp.:339-369, 2002.

[56] J.D. Brown, J.D.E. Creighton, R. Mann, "Temperature, energy, and heat capacity of asymptotically anti-de Sitter black holes", Phys. Rev. D, vol. 50, Issue 10, pp.6394-6403, 1994.

[57] S.A. Hayward, "Unified first law of black-hole dynamics and relativistic thermodynamics", Class. Quantum Grav., vol. 15, Issue 10, pp. 3147-3162, 1998.

[58] G. ’t Hooft, arxiv:9310026[gr-qc]

[59] L. Susskind, "The world as a hologram", J. Math. Phys., vol. 36, Issue 11, pp.6377-6396, 1995; [hep- th/9409089].

[60] R.M. Wald, Living Rev. Relativity, vol. 4, lrr-2001-6, 2001. URL (cited on 29 January 2004): http://www.livingreviews.org/lrr-2001-6.

[61] R. Bousso, "The holographic principle", Rev. Mod. Phys., vol. 74, Issue 3, pp. 825-874, 2002; arxiv:0203101[hep- th].

[62] R. Bousso, "Holography in general space-times", J. High Energy Phys., Issue 06, id. 028, 1999; arXiv:9906022[hep-th].

[63] é.é.Flanagan, D. Marolf & R.M. Wald, "Proof of classical versions of the Bousso entropy bound and of the generalized second law", Phys. Rev. D, vol. 62, Issue 8, id.084035, 2000; arXiv:9908070[hep-th]

[64] L.B. Szabados, "Quasi-local holography and quasi-local mass of classical fields in Minkowski spacetime", Class. Quantum Grav., vol. 22, Issue 5, pp. 855-878 (2005); arXiv:0411148[gr-qc]

[65] J. M. Maldacena, "The Large N Limit of Superconformal Field Theories and Supergravity", Adv. Theor. Math. Phys., vol. 2, p. 231, 1998; arxiv:9711200[hep-th].

[66] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, "Large N field theories, string theory and gravity", Phys. Rept., vol. 323, Issue 3, pp. 183-386, 2000; [hep-th/9905111].

[67] S. S. Gubser, I. R. Klebanov and A. W. Peet, "Entropy and temperature of black 3-branes", Phys. Rev. D, vol. 54, Issue 6, pp.3915-3919, 1996; arxiv9602135[hep-th]

[68] W. Israel, "Thermo-field dynamics of black holes", Phys. Lett. A, vol. 57, Issue 2, pp. 107-110, 1976.

[69] G. ’t Hooft, "On the quantum structure of a black hole", Nucl. Phys. B, vol. 256, pp. 727-745 1985.

[70] R. Brustein, M.B.Einhorn, A. Yarom, "Entanglement interpretation of black hole entropy in string theory", J. of High Energy Phys., Issue 01, id. 098, 2006. (2006)

[71] T. Nishioka, Sh.Ryu, T. Takayanagi, "Holographic entanglement entropy: an overview", J. of Phys. A: Math. and Theor., vol. 42, Issue 50, article id. 504008, 35 pp., 2009. arxiv:0905.0932[hep-th].

[72] G. Ter-Kazarian, S. Shidhani & L. Sargsyan, "Neutrino Radiation of The AGN Black Holes", Astrophys. & Space Sci., Vol.310, pp. 93-110, 2007.

[73] A. Komar, "Covariant Conservation Laws in General Relativity", Phys.rev., vol. 113, p.934, 1959.

[74] D.C. Robinson, "Uniqueness of the Kerr black hole", Phys. Rev. Lett., vol. 34, pp. 905, 906, 1975.