Advances in Astrophysics
Application of the Non-Local Physics in the Theory of the Matter Movement in Black Holes
Download PDF (668.6 KB) PP. 99 - 135 Pub. Date: August 1, 2018
Author(s)
- Boris V. Alexeev*
Physics Department, Moscow Technological University, Moscow, Russia
Abstract
Keywords
References
[1] Chandrasekhar, S. (1958) [first edition 1939]. An Introduction to the Study of Stellar Structure. New York: Dover. ISBN 0-486-60413-6.
[2] Chandrasekhar, S. (2005) [first edition 1942]. Principles of Stellar Dynamics. New York: Dover. ISBN 0-486- 44273-X.
[3] Wheeler, John Archibald (2000). Exploring Black Holes: Introduction to General Relativity. Addison Wesley. ISBN 0-201-38423-X.
[4] Hawking, S W, Gravitationally collapsed objects of very low mass, Monthly Notices of the Royal Astronomical Society, Vol. 152, 1971, p. 75.
[5] Alexeev, B V “Unified Non-local Theory of Transport Processes”. Elsevier, Amsterdam, The Netherlands, 2015.
[6] Alexeev B.V. Application of the Non-Local Physics in the Theory of the Matter Movement in Black Hole // J. Modern Physics. V. 4. p. 42–49 (2013) doi:10.4236/jmp.2013.47A1005. Published Online July 2013 (http://www.scirp.org/journal/jmp)
[7] Shevelev Yu D, Andrushchenko V A, Murashkin I V, Numerical Solution of the Problem of the Theory of Point Explosion in Lagrangian Coordinates. Some New Results. Mathematical Modeling, v. 23, (2011), (in Russian).
[8] Sedov L. I., the Movement of air in a strong explosion // DAN SSSR, 1946, vol. 52, No. 1, pp. 17?20.
[9] Taylor G. The formation of a blast wave by a very intense explosion // Proc. Roy. Soc., London, 1950, A. 201, No. 1065, p.159-186.
[10] Zeldovich Y. B., Raizer Yu. P. Physics of shock waves and the high-temperature gas dynamics phenomena. ? M.: Nauka, 1963, 632с.
[11] Kestenbaum, H. S., Roslyakov G. S., and L. A. Chudov L. A., A Point explosion. (Methods of calculation. The tables). ?M.: Nauka, 1974, 255p.
[12] Korobeinikov V. P. Problems in the theory of point explosion. ? M.: Nauka, 1985, 400 p.
[13] Kestenbaum, H. S., Turkish F. D., Chudov L.A., Shevelev Yu. D. Eulerian and Lagrangian methods for calculation of a point explosion in an inhomogeneous atmosphere. Numerical methods in gas dynamics. Second International Colloquium on the dynamics of explosion and reactive systems. Vol. 3. Novosibirsk, 19-23 Aug. 1969. ? M.: pp. 85?97.
[14] Shevelev Yu. D. Spatial problems of computational Aero-and hydrodynamics. ? M.: Nauka, 1986, 368с.
[15] Robert M. Wald. General relativity. — University of Chicago Press, 1984. — ISBN 978-0-226-87033-5.
[16] Poplawski N. J., Radial motion into an Einstein - Rosen bridge, Physics Letters B, Vol. 687, Nos. 2-3 (2010) pp. 110–113.
[17] Markov M.A. “Maximon” and “minimon” in the light of a possible formulation of the concept of an “elementary particle”, Pis'ma v Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki (ISSN 0370-274X), vol. 45, Feb. 10, 1987, p. 115-117. In Russian.
[18] McHardy I.M., Koerding E., Knigge C., et al., Active galactic nuclei as scaled-up Galactic black holes. Nature 444, 730 (2006) doi:10.1038/nature05389
[19] Piotrovich, M.Y., Silant'ev, N.A., Gnedin, Y.N. et al. Magnetic fields and quasi-periodic oscillations of black hole radiation. Astrophys. Bull. (2011) 66: 320. https://doi.org/10.1134/S1990341311030047
[20] Frolov, Valeri; Zelnikov, Andrei (2011). Introduction to Black Hole Physics. Oxford. p. 168. ISBN 0-19-969229- 7.
[21] Schutz B.F. Detection of gravitational waves in Proceedings of “Astrophysical sources of gravitational radiation”, J.A. Marck and J.P. Lasota Eds., Cambridge Univ. Press (1996)