Isaac Scientific Publishing

Advances in Astrophysics

A Lognormal Luminosity Function for SWIRE in Flat Cosmology

Download PDF (695.9 KB) PP. 239 - 249 Pub. Date: October 18, 2018

DOI: 10.22606/adap.2018.34003

Author(s)

  • Lorenzo Zaninetti*
    Physics Department, via P.Giuria 1, I-10125 Turin, Italy

Abstract

The evaluation of the physical parameters or e ects|such as the luminosity function (LF) or the photometric maximum (PM)|for galaxies is routinely modeled by their spectroscopic redshift. Here, we model LF and PM for galaxies by the photometric redshift as given by the Spitzer Wide-Area Infrared Extragalactic (SWIRE) catalog in the framework of a lognormal LF. In addition, we compare our model with the Schechter LF for galaxies. The adopted cosmological framework is that of the at cosmology.

Keywords

Galaxy groups, clusters, and superclusters; large scale structure of the Universe Cos- mology

References

[1] M. Rowan-Robinson, E. Gonzalez-Solares, M. Vaccari, L. Marchetti, Revised SWIRE photometric redshifts, MNRAS 428 (2013) 1958{1967. arXiv:1210.3471, doi:10.1093/mnras/sts163.

[2] G. Dalya, Z. Frei, G. Galgoczi, P. Ra ai, R. S. de Souza, VizieR Online Data Catalog: GLADE catalog (Dalya+, 2016), VizieR Online Data Catalog 7275.

[3] B. V. Karasev, Statistical genesis of a lognormal distribution as a source of properties observed in the clumping of galaxies, Pisma v Astronomicheskii Zhurnal 8 (1982) 527{534.

[4] B. McBreen, K. J. Hurley, R. Long, L. Metcalfe, Lognormal Distributions in Gamma-Ray Bursts and Cosmic Lightning, MNRAS 271 (1994) 662. doi:10.1093/mnras/271.3.662.

[5] H. Li, E. E. Fenimore, Log-normal Distributions in Gamma-Ray Burst Time Histories, ApJ 469 (1996) L115. arXiv:astro-ph/9607131, doi:10.1086/310275.

[6] E. Nakar, T. Piran, New Results on the Temporal Structure of GRBs, in: E. Costa, F. Frontera, J. Hjorth (Eds.), Gamma-ray Bursts in the Afterglow Era, 2001, p. 348. arXiv:astro-ph/0103011.

[7] K. Ioka, T. Nakamura, A Possible Origin of Lognormal Distributions in Gamma-Ray Bursts, ApJ 570 (2002) L21{L24. arXiv:astro-ph/0202053, doi:10.1086/340815.

[8] L. Zaninetti, The Truncated Lognormal Distribution as a Luminosity Function for SWIFT-BAT Gamma-Ray Bursts, Galaxies 4 (2016) 57. arXiv:1611.01650, doi:10.3390/galaxies4040057.

[9] K. J. Hurley, B. McBreen, M. Delaney, A. Britton, Lognormal Properties of SGR 1806-20 and Implica- tions for Other SGR Sources, Astrophysics and Space Science 231 (1995) 81{84. arXiv:astro-ph/9508074, doi:10.1007/BF00658592.

[10] B. McBreen, K. J. Hurley, Lognormal properties of SGR1806-20 and the possibility of a quiescent population of other SGR sources, in: C. A. Meegan, R. D. Preece, T. M. Koshut (Eds.), Gamma-Ray Bursts, 4th Hunstville Symposium, Vol. 428 of American Institute of Physics Conference Series, 1998, pp. 939{943. arXiv:astro-ph/9807218, doi:10.1063/1.55418.

[11] J. H. Marr, Angular momentum of disc galaxies with a lognormal density distribution, MNRAS 453 (2015) 2214{2219. arXiv:1507.04515, doi:10.1093/mnras/stv1734.

[12] J. H. Marr, Galaxy rotation curves with lognormal density distribution, MNRAS 448 (2015) 3229{3241. arXiv:1502.02949, doi:10.1093/mnras/stv216.

[13] P. Schechter, An analytic expression for the luminosity function for galaxies., ApJ 203 (1976) 297{306.

[14] L. Zaninetti, A new luminosity function for galaxies as given by the mass-luminosity relationship , AJ 135 (2008) 1264{1275.

[15] L. Zaninetti, The Luminosity Function of Galaxies as modelled by the Generalized Gamma Distribution , Acta Physica Polonica B 41 (4) (2010) 729{751.

[16] M. Bilicki, J. A. Peacock, T. H. Jarrett, et al., WISE * SuperCOSMOS Photometric Redshift Catalog: 20 Million Galaxies over 3/pi Steradians, ApJS 225 (2016) 5. arXiv:1607.01182, doi:10.3847/0067-0049/225/1/5.

[17] J. Varela, J. Betancort-Rijo, I. Trujillo, E. Ricciardelli, The Orientation of Disk Galaxies around Large Cosmic Voids, ApJ 744 (2012) 82. arXiv:1109.2056, doi:10.1088/0004-637X/744/2/82.

[18] I. M. H. Etherington, On the De nition of Distance in General Relativity., Philosophical Magazine 15.

[19] R. Beck, C.-A. Lin, E. E. O. Ishida, et al., On the realistic validation of photometric redshifts, MNRAS 468 (2017) 4323{4339. doi:10.1093/mnras/stx687.

[20] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in FORTRAN. The Art of Scienti c Computing, Cambridge University Press, Cambridge, UK, 1992.

[21] Y. Avni, J. N. Bahcall, On the simultaneous analysis of several complete samples - The V/Vmax and Ve/Va variables, with applications to quasars, ApJ 235 (1980) 694{716. doi:10.1086/157673.

[22] S. Eales, Direct construction of the galaxy luminosity function as a function of redshift, ApJ 404 (1993) 51{62. doi:10.1086/172257.

[23] R. S. Ellis, M. Colless, T. Broadhurst, J. Heyl, K. Glazebrook, Auto b Redshift Survey - I. Evo- lution of the galaxy luminosity function, MNRAS 280 (1996) 235{251. arXiv:astro-ph/9512057, doi:10.1093/mnras/280.1.235.

[24] M. Schmidt, Space Distribution and Luminosity Functions of Quasi-Stellar Radio Sources, ApJ 151 (1968) 393. doi:10.1086/149446.

[25] N. Onyett, S. Oliver, G. Morrison, F. Owen, F. Pozzi, D. Carson, SWIRE Team, The 24m Luminosity Function of spectroscopic SWIRE sources from the Lockman Validation Field, in: L. Armus, W. T. Reach (Eds.), Astronomical Society of the Paci c Conference Series, Vol. 357 of Astronomical Society of the Paci c Conference Series, Astronomical Society of the Paci c, 2006, p. 275. arXiv:astro-ph/0503444.

[26] H. Akaike, A new look at the statistical model identi cation, IEEE Transactions on Automatic Control 19 (1974) 716{723.

[27] A. R. Liddle, How many cosmological parameters?, MNRAS 351 (2004) L49{L53.

[28] W. Godlowski, M. Szydowski, Constraints on Dark Energy Models from Supernovae, in: M. Turatto, S. Benetti, L. Zampieri, W. Shea (Eds.), 1604-2004: Supernovae as Cosmological Lighthouses, Vol. 342 of Astronomical Society of the Paci c Conference Series, Astronomical Society of the Paci c, 2005, pp. 508{516.

[29] M. Evans, N. Hastings, B. Peacock, Statistical Distributions - third edition, John Wiley & Sons Inc, New York, 2000.

[30] N. L. Johnson, S. Kotz, N. Balakrishnan, Continuous univariate distributions. Vol. 1. 2nd ed., Wiley , New York, 1994.

[31] J. Y. H. Soo, B. Moraes, B. Joachimi, W. Hartley, O. Lahav, A. Charbonnier, M. Makler, M. E. S. Pereira, J. Comparat, T. Erben, A. Leauthaud, H. Shan, L. VanWaerbeke, Morpho-z: improving photometric redshifts with galaxy morphology, MNRAS 475 (2018) 3613{3632. arXiv:1707.03169, doi:10.1093/mnras/stx3201.