联系我们
Isaac Scientific Publishing
Advances in Astrophysics
AdAp > Volume 4, Number 2, May 2019

Red Rain Cells of Kerala as a Possible Carrier of the Diffuse Interstellar Bands and the UV Extinction Bump

Download PDF  (1433.2 KB)PP. 72-81,  Pub. Date:May 28, 2019
DOI: 10.22606/adap.2019.42003

Author(s)
A. Santhosh Kumar, N. Chandra Wickramasinghe, Godfrey Louis
Affiliation(s)
School of Pure & Applied Physics, Mahatma Gandhi University, Priyadarshini Hills P.O, Kottayam-686560, Kerala, India
Centre for Astrobiology, The University of Buckingham, Buckingham, MK18 1EG, UK.
Institute for the Study of Panspermia and Astroeconomics, Gifu, Japan.
Centre for Astrobiology, University of Ruhuna, Matara, Sri Lanka.
Astrobiology Division, Department of Physics, Cochin University of Science & Technology, Cochin-682022, Kerala, India.
Abstract
Despite various proposals, no conclusive identification exists for the carriers of diffuse interstellar absorption bands DIBs and the UV extinction bump at 217.5 nm. The red rain cells of Kerala show strong absorption features near 216.5 nm and several weak absorption features in the wavelength region 400 to 900 nm which are superimposed on a broader blue-UV absorption peak. The red pigment extracted from the cells show strong peaks at 334 nm and 440 nm along with multitude of weak peaks. The measured absorption peaks are compared with that of DIBs and the UV bump. The higher peak widths for red cells in comparison with DIBs is attributed to the temperature difference between space environment and laboratory. Our results of the absorption spectra of red rain cells show significant correlation with the reported wavelengths of numerous DIBs and the UV extinction bump of the interstellar medium, thus showing that the red rain cells, which are of suspected extraterrestrial origin, is a plausible carrier of DIBs and the UV extinction bump.
Keywords
Diffuse interstellar bands, UV extinction bump, interstellar dust, red rain of Kerala
References
  • [1]  P. Ehrenfreund and S. B. Charnley, “Organic Molecules in the Interstellar Medium, Comets, and Meteorites: A Voyage from Dark Clouds to the Early Earth,” Annual Review of Astronomy and Astrophysics, vol. 38, no. 1, pp. 427–483, 2000. [Online]. Available: https://doi.org/10.1146/annurev.astro.38.1.427
  • [2]  G. Herbig, “The Diffuse Interstellar Bands,” Annual Review of Astronomy and Astrophysics, vol. 33, pp. 19–74, 1995.
  • [3]  M. Heger, “The spectra of certain class B stars in the regions 5630A-6680A and 3280A-3380A,” Lick Observatory Bulletin, vol. 10, pp. 146–147, 1922.
  • [4]  G. Herbig, “The diffuse interstellar bands. IV - The region 4400-6850 A,” Ap. J., vol. 196, pp. 129–160, feb 1975.
  • [5]  F. Salama, G. Galazutdinov, J. Krelowski, L. Allamandola, and F. Musaev, “Polycyclic Aromatic Hydrocarbons and the Diffuse Interstellar Bands: A Survey,” The Astrophys. Journ., vol. 526, pp. 265–273, nov 1999.
  • [6]  P. Jenniskens and F.-X. Desert, “A survey of diffuse interstellar bands (3800-8680 A),” Astronomy and Astrophysics Suppl., vol. 106, pp. 39–78, jul 1994.
  • [7]  S. ó. Tuairisg, J. Cami, B. H. Foing, P. Sonnentrucker, and P. Ehrenfreund, “A deep echelle survey and new analysis of diffuse interstellar bands ,” Astron. Astrophys. Suppl. Ser., vol. 142, no. 2, pp. 225–238, 2000. [Online]. Available: https://doi.org/10.1051/aas:2000148
  • [8]  F. Y. Xiang, A. Li, and J. X. Zhong, “A tale of two mysteries in interstellar astrophysics: the 2175 Å extinction bump and diffuse interstellar bands,” The Astrophysical Journal, vol. 733, no. 2, p. 91, may 2011. [Online]. Available: https://doi.org/10.1088%2F0004-637x%2F733%2F2%2F91
  • [9]  E. K. Campbell, M. Holz, D. Gerlich, and J. P. Maier, “Laboratory confirmation of C + 60 as the carrier of two diffuse interstellar bands,” Nature, vol. 523, p. 322, jul 2015. [Online]. Available: https://doi.org/10.1038/nature14566
  • [10]  A. Tielens and T. Snow, The Diffuse Interstellar Bands. Springer Netherlands, 1995.
  • [11]  S. Schlemmer, D. J. Cook, J. A. Harrison, B. Wurfel, W. Chapman, and R. J. Saykally, “The unidentified interstellar infrared bands: PAHs as carriers?” Science, vol. 265, no. 5179, pp. 1686–1689, 1994. [Online]. Available: http://science.sciencemag.org/content/265/5179/1686
  • [12]  K. Rauf and C. Wickramasinghe, “Evidence for biodegradation products in the interstellar medium,” International Journal of Astrobiology, vol. 9, no. 1, pp. 29–34, 2010.
  • [13]  B. T. Draine, “On the Interpretation of the  2175 Å Feature,” in Interstellar Dust, ser. IAU Symposium, L. Allamandola and A. Tielens, Eds., vol. 135. Springer Netherlands, 1989, p. 313.
  • [14]  E. Fitzpatrick and D. Massa, “An analysis on the shapes of ultraviolet extinction curves. I - The 2175 Å bump,” Astrophysical Journal, vol. 307, pp. 286–294, aug 1986.
  • [15]  B. Draine and H. Lee, “Optical properties of interstellar graphite and silicate grains,” Astrophysical Journal, vol. 285, pp. 89–108, oct 1984.
  • [16]  F. Hoyle and N. Wickramasinghe, “On graphite particles as interstellar grains,” Monthly Notices of the Royal Astronomical Society, vol. 124, p. 417, 1962.
  • [17]  B. T. Draine, “Interstellar Dust Grains,” Annual Review of Astronomy and Astrophysics, vol. 41, no. 1, pp. 241–289, 2003. [Online]. Available: https://doi.org/10.1146/annurev.astro.41.011802.094840
  • [18]  W. Duley, “Refractive indices for amorphous carbon,” Astrophysical Journal, vol. 287, pp. 694–696, dec 1984.
  • [19]  R. Papoular, J. Conard, O. Guillois, I. Nenner, C. Reynaud, and J.-N. Rouzaud, “A comparison of solid-state carbonaceous models of cosmic dust.” Astronomy and Astrophysics, vol. 315, pp. 222–236, nov 1996.
  • [20]  W. Krätschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, “Solid C60: a new form of carbon,” Nature, vol. 347, no. 6291, pp. 354–358, 1990. [Online]. Available: https://doi.org/10.1038/347354a0
  • [21]  W. A. de Heer and D. Ugarte, “Carbon onions produced by heat treatment of carbon soot and their relation to the 217.5 nm interstellar absorption feature,” Chemical Physics Letters, vol. 207, no. 4, pp. 480–486, 1993. [Online]. Available: http://www.sciencedirect.com/science/article/pii/000926149389033E
  • [22]  C. Joblin, A. Leger, and P. Martin, “Contribution of polycyclic aromatic hydrocarbon molecules to the interstellar extinction curve,” Astrophysical Journal,Letters, vol. 393, pp. L79–L82, jul 1992.
  • [23]  J. Mathis, “The origin of variations in the 2175 A extinction bump,” Astrophysical Journal, vol. 422, pp. 176–186, feb 1994.
  • [24]  S. Wada, C. Kaito, S. Kimura, H. Ono, and A. Tokunaga, “Carbonaceous onion-like particles as a component of interstellar dust,” Astronomy and Astrophysics, vol. 345, pp. 259–264, may 1999.
  • [25]  F. Hoyle and N. Wickramasinghe, “Identification of the 2,200 Å interstellar absorption feature,” Nature, vol. 270, p. 323, nov 1977.
  • [26]  G. Louis and A. S. Kumar, “The Red Rain Phenomenon of Kerala and its Possible Extraterrestrial Origin,” Astrophysics and Space Science, vol. 302, no. 1-4, pp. 175–187, apr 2006. [Online]. Available: http://www.springerlink.com/content/dx713q4l94v6r76t/
  • [27]  P. McCafferty, “Bloody rain again! Red rain and meteors in history and myth,” International Journal of Astrobiology, vol. 7, no. 01, pp. 9–15, jan 2008. [Online]. Available: http://journals.cambridge.org/abstract_ S1473550407003904
  • [28]  K. Rauf, R. Gangappa, M. Thomas, C. Wickramasinghe, and A. Campbell, “Red rain cell research: A new perspective for interplanetary transfer of life,” in European Planetary Science Congress 2009 Abstracts vol.4, 2009, pp. 707–1. [Online]. Available: http://meetingorganizer.copernicus.org/EPSC2009/EPSC2009-707-1.pdf
  • [29]  G. Louis and A. S. Kumar, “Unusual autofluorescence characteristic of cultured red-rain cells,” in Proc.SPIE, vol. 7097, aug 2008. [Online]. Available: https://doi.org/10.1117/12.794041
  • [30]  A. S. Kumar, N. C. Wickramasinghe, and G. Louis, “A comparative study of Trentepohlia and Red Rain cells,” International Journal of Recent Scientific Research, vol. 4, no. 8, pp. 1205–1209, 2013. [Online]. Available: http://www.recentscientific.com/comparative-study-trentepohlia-and-red-rain-cells
  • [31]  R. Gangappa and S. I. Hogg, “DNA unmasked in the red rain cells of Kerala,” Microbiology, vol. 159, no. 1, pp. 107–111, 2013. [Online]. Available: https://mic.microbiologyresearch.org/content/journal/micro/10.1099/ mic.0.062711-0
  • [32]  G. Louis and A. S. Kumar, “Autofluorescence characteristics of the red rain cells,” in SPIE Optical Engineering + Applications, R. B. Hoover, G. V. Levin, A. Y. Rozanov, and N. C. Wickramasinghe, Eds. International Society for Optics and Photonics, sep 2013, pp. 88 650I–88 650I–10. [Online]. Available: http://dx.doi.org/10.1117/12.2024366
  • [33]  R. Gangappa, M. J. Burchell, and S. I. Hogg, “Morphological and Molecular Analysis Calls for a Reappraisal of the Red Rain Cells of Kerala,” Current Microbiology, vol. 68, no. 2, pp. 192–198, feb 2014. [Online]. Available: http://link.springer.com/10.1007/s00284-013-0464-9
  • [34]  N. Miyake, T. Matsui, J. Wallis, D. H. Wallis, A. Samaranayake, K. Wickramarathne, and N. C. Wickramasinghe, “Discovery of Uranium in Outer Coat of Sri Lankan Red Rain Cells,” Journal of Cosmology, vol. 22, pp. 10 042–10 050, 2013.
  • [35]  M. Schnaiter, H. Mutschke, J. Dorschner, T. Henning, and F. Salama, “Matrix-isolated Nano-sized Carbon Grains as an Analog for the 217.5 Nanometer Feature Carrier,” Astrophysical Journal, vol. 498, pp. 486–496, may 1998.
Copyright © 2019 Isaac Scientific Publishing Co. All rights reserved.