Isaac Scientific Publishing

Journal of Advances in Nanomaterials

Synthesis and Stability of Pt3Co and Pt0.7≤X≤1Co Films Voltammetrically Activated in Acidic Medium for Methanol Fuel Cell Application

Download PDF (665.8 KB) PP. 97 - 104 Pub. Date: April 19, 2017

DOI: 10.22606/jan.2017.22002

Author(s)

  • J.Vilana, M. Montiel
    Ge-CPN, Departament de Ciència de Materials i Química Física and Institut de Nanociència i Nanotecnologia (IN2UB). C/Martí i Franquès, 1-11, 08028 Barcelona, Spain
  • N. Gimeno

    Ge-CPN, Departament de Ciència de Materials i Química Física and Institut de Nanociència i Nanotecnologia (IN2UB). C/Martí i Franquès, 1-11, 08028 Barcelona, Spain
  • E. Gómez

    Ge-CPN, Departament de Ciència de Materials i Química Física and Institut de Nanociència i Nanotecnologia (IN2UB). C/Martí i Franquès, 1-11, 08028 Barcelona, Spain
  • E. Vallés*

    Ge-CPN, Departament de Ciència de Materials i Química Física and Institut de Nanociència i Nanotecnologia (IN2UB). C/Martí i Franquès, 1-11, 08028 Barcelona, Spain

Abstract

Pt-Co thin films have been prepared by means of electrodeposition method, due to the interest of this alloy as catalyst in acid fuel cells. As the stability of the catalyst is fundamental to consider its applicability, the behavior of the films as a function of the composition during voltammetry activation in acidic medium has been studied. The Pt3Co films show high stability, maintaining their morphology, X-ray diffraction profile, composition and high surface area, and show good catalytic behaviour for methanol electro-oxidation in acidic medium. However, the Pt0.7≤x≤1Co films present low stability and evolve during the test to flatter films of lower effective area and Pt3Co stoichiometry, by losing cobalt. Only Pt-Co electrodeposited films of defined compositions show the enough stability and properties to be used as good materials for electro-oxidation processes in acidic media.

Keywords

PtCo films, electrodeposition, catalyst for acid fuel cells, voltammetry, electro-oxidation processes.

References

[1] R. Dillon, S. Srinivasan, A.S. Aricò, and V. Antonucci, "International activities in DMFC R&D: Status of technologies and potential applications," Journal of Power Sources, vol. 127, pp. 112-126, 2004.

[2] G. Apanel, and E. Jonson, "Direct methanol fuel cells: ready to go commercial?," Fuel Cells Bulletin, vol. 11, pp. 12, 2004.

[3] S. Gottesfeld, and T.A. Zawodzinski, Advances in Electrochemical Science and Engineering. Wiley-VCH Verlag GmbH, Weinheim, 1997.

[4] A.J. Appleby, and F.R. Foulkes, Fuel Cell Handbook. Van Remhold, 1989.

[5] V.S. Bagotzky, Y.B. Vassiliev, and O.A. Khazova, "Generalized scheme of chemisorption, electro-oxidation and electroreduction of simple organic compounds on platinum group metals," Journal of Electroanalytical Chemistry, vol. 81, pp. 229-238, 1977.

[6] M. Montiel, P. Hernández-Fernández, J.L. García-Fierro, S. Rojas, and P. Ocón, "Promotional effect of upper Ru oxides as methanol tolerant electrocatalyst for the oxygen reduction reaction," Journal of Power Sources, vol. 191, pp. 280-288, 2009.

[7] E. Antolini, J.R.C. Salgado, and E.R. Gonzalez, "The methanol oxidation reaction on platinum alloys with the first row transition metals," Applied Catalysis B: Environmental, vol. 63, pp. 137-149, 2006.

[8] H. Liu, C. Song, L. Zhang, J. Zhang, H. Wang, and D.P. Wilkinson, "A review of anode catalysis in the direct methanol fuel cell," Journal of Power Sources, vol. 155, pp. 95-110, 2006.

[9] E. Antolini, "Catalysts for direct ethanol fuel cells," Journal of Power Sources, vol. 170, pp. 1-12, 2007.

[10] H. Liu, and J. Zhang, Electrocatalysis of Direct Methanol Fuel Cells: From Fundamentals to Applications. Wiley-VCH, 2009.

[11] P. Hernández-Fernández, M. Montiel, P. Ocón, J.L. García-Fierro, H. Wang, H.D. Abru?a, and S. Rojas, "Effect of Co in the efficiency of the methanol electro-oxidation reaction on carbon supported Pt," Journal of Power Sources, vol. 195, pp. 7959-7967, 2010.

[12] H.A. Gasteiger, N. Markovi?, P.N. Ross Jr, and E.J. Cairns, "Methanol electro-oxidation on well-characterized Pt-Ru alloys," Journal of Physical Chemistry, vol. 97, pp. 12020-12029, 1993.

[13] T. Iwasita, "Electrocatalysis of methanol oxidation," Electrochimica Acta, vol. 47, pp. 3663-3674, 2002.

[14] R. Parsons, and T. VanderNoot, "The oxidation of small organic molecules. A survey of recent fuel cell related research," Journal of Electroanalytical Chemistry, vol. 257, pp. 9-45, 1988.

[15] S. Wasmus, and A. Küver, "Methanol oxidation and direct methanol fuel cells: A selective review," Journal of Electroanalytical Chemistry, vol. 461, pp. 14-31, 1999.

[16] E. Antolini, J.R.C. Salgado, and E.R. Gonzalez, "The stability of Pt–M (M=first row transition metal) alloy catalysts and its effect on the activity in low temperature fuel cells," Journal of Power Sources, vol. 160, pp. 957-968, 2006.

[17] H.A. Gasteiger, S.S. Kocha, B. Sompalli, and F.T. Wagner, "Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs," Applied Catalysis B: Environmental, vol. 56, pp. 9-35, 2005.