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Abstract We present new oscillation criteria for a class of third order nonlinear differential
equations with a nonpositive neutral term. The results obtained improve and complement some
related results known in the literature. Two illustrative examples are provided.
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1 Introduction

This paper is concerned with the oscillatory behavior of solutions of nonlinear third-order differential
equations with a nonpositive neutral term of the form

(x(t)− p(t)x(σ(t)))′′′ + q(t)xβ(τ(t)) = 0, t ≥ t0 > 0, (1)
subject to the following conditions:

(i) β is the ratio of positive odd integers;
(ii) p, q : [t0,∞)→ (0,∞) are continuous functions and 0 ≤ p(t) ≤ p0 < 1;
(iii) τ, σ : [t0,∞) → R are continuous functions with τ(t) ≤ t, σ(t) ≤ t, τ ′(t) > 0, σ′(t) > 0, and

limt→∞τ(t) = limt→∞σ(t) =∞.

By a solution of equation (1), we mean a function x ∈ C ([Tx,∞), R) for some Tx ≥ t0 which has
the property x(t) − p(t)x(σ(t)) ∈ C3 ([Tx,∞), R) and satisfies (1) on [Tx,∞) . We consider only those
solutions of (1) which satisfy sup {|x(t)| : t ≥ T} > 0 for all T ≥ Tx and assume that (1) possesses such
solutions. A solution x(t) of (1) is said to be oscillatory if it has arbitrarily large zeros, i.e., for any
t1 ∈ [t0,∞) there exists t2 ≥ t1 such that x(t2) = 0; otherwise it is called nonoscillatory, i.e., it is
eventually of one sign. Equation (1) is said to be oscillatory if all its solutions oscillate.

In recent years, there has been much research activity concerning the oscillation and nonoscillation of
solutions of different classes of differential equations with linear and nonlinear neutral term, and we refer
the reader to the papers [1], [2], [3], [4], [5], [6], [7], [10], [11], [13], [14], [15] and the references therein as
examples of recent results on this topic. A commonly employed condition is

−1 < p(t) ≤ 0

as well as the condition
0 ≤ p(t) < 1.

However, oscillatory behavior of solutions of differential equations with a nonpositive neutral term
are not very prevalent in the literature; some results can be found in [3], [6] , [7] and [11] for third order
equations and [4], [10] and [13] for second order equations. We point out that the sufficient conditions
established in these papers ensure that any solution x(t) of the equation considered either oscillates or
converges to zero as t → ∞. This means that these results cannot distinguish solutions with different
behaviors.

Here we wish to develop some new sufficient conditions which ensure that every solution of (1) is
oscillatory. In this connection, the results in the present paper improve many known results in the relevant
literature, and furthermore, can easily be extended to the more general third order differential equations
as well as second order differential equations with a nonpositive neutral term. For these reasons, we expect
that the results presented in this paper will contribute significantly to study of oscillation of solutions of
various classes of differential equations with a nonpositive neutral term.
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2 Main Results

We begin with the following new comparison criterion.
Theorem 2.1 : Let h(t) = σ−1(τ(t)) ≤ t for t ≥ t0 and assume that there exists an increasing function

η : [t0,∞)→ (0,∞) such that τ(t) ≤ η(t) ≤ t for t ≥ t0. If the equations

K ′(t) + θ

2β τ
2β(t)q(t)Kβ(τ(t)) = 0, (2)

for some constant θ ∈ (0, 1),

Z ′(t) + q(t)
(

(η(t)− τ(t))2

2

)β
Zβ(η(t)) = 0, (3)

and

W ′(t) + (θh(t))β
 ∞∫
t

q(s)ds

W β(h(t)) = 0, (4)

are oscillatory, then equation (1) is oscillatory.
Proof : Let x(t) be a nonoscillatory solution of (1), say x(t) > 0, x(τ(t)) > 0 and x(σ(t)) > 0 for t ≥ t1

for some t1 ≥ t0.
Let

y(t) = x(t)− p(t)x(σ(t)), t ≥ t0. (5)

Then, from equation (1) and condition(ii) we see that

y′′′(t) = −q(t)xβ(τ(t)) < 0, t ≥ t1, (6)

and hence y′′(t) is decreasing and eventually of one sign. That is, there exists a t2 ≥ t1 such that y′′(t) > 0
or y′′(t) < 0 for t ≥ t2. We claim that y′′(t) > 0 for t ≥ t2. To prove the claim, suppose that there exists
t2 ∈ [t1,∞) such that y′′(t) < 0 for t ≥ t2. Then, in view of (6) there exist a t3 ≥ t2 and a positive
constant µ such that

y′′(t) ≤ y′′(t3) := −µ < 0 for t ≥ t3.

Integrating the last inequality twice from t3 to t, we conclude that limt→∞ y(t) = −∞.
Now, we consider the following two cases:
Case 1: If x(t) is unbounded, then there exists a sequence {tk} such that limk→∞ tk = ∞ and

limk→∞ x(tk) = ∞, where x(tk) = max {x(s) : t0 ≤ s ≤ tk}. Since σ(t) → ∞ as t → ∞, for sufficiently
large k, we have σ(tk) > t0 . From σ(t) ≤ t, we see that

x(σ(tk)) = max {x(s) : t0 ≤ s ≤ σ(tk)} ≤ max {x(s) : t0 ≤ s ≤ tk} = x(tk).

Therefore, for sufficiently large k, we obtain

y(tk) = x(tk)− p(tk)x(σ(tk)) ≥ (1− p0)x(tk) > 0,

which contradicts the fact that limt→∞ y(t) = −∞.
Case 2: If x(t) is bounded, then y(t) is also bounded, which again contradicts the fact that limt→∞ y(t) =

−∞. This proves the claim and concludes that y′′(t) > 0 for t ≥ t2.
Next, we have two cases to consider (I) y(t) > 0 for t ≥ t2 or (II) y(t) < 0 for t ≥ t2.
Case (I): Suppose that y(t) > 0 for t ≥ t2. Then, from (5) we see that

x(t) ≥ y(t) for t ≥ t2,

which together with (1) or (6) gives

y′′′(t) ≤ −q(t)yβ(τ(t)) < 0 for t ≥ t3 ≥ t2, (7)
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and so, by Kiguradze’s Lemma (see [8]), we distinguish the following two cases:
(a) y′′(t) > 0 and y′(t) > 0 for t ≥ t3,
(b) y′′(t) > 0 and y′(t) < 0 for t ≥ t3.
Suppose (a) holds. Then, there exist θ ∈ (0, 1) and a t4 ≥ t3 such that

y′(t) ≥ θty′′(t) for t ≥ t4.

Integrating this inequality from t4 to t yields

y(t) ≥ θ

2 t
2y′′(t), t ≥ t5,

and hence
y(τ(t)) ≥ θ

2τ
2(t)y′′(τ(t)) for t ≥ t6 ≥ t5, (8)

where we assume τ(t) ≥ t5 for t ≥ t6. Using (8) in (7) gives

K ′(t) + θ

2β τ
2β(t)q(t)Kβ(τ(t)) ≤ 0, (9)

where K(t) = y′′(t) > 0. The function K(t) is obviously strictly decreasing on [t3,∞). Hence, by Theorem
2.1 in [12], we conclude that there exists a positive solution K(t) of equation (2) with limt→∞K(t) = 0,
which contradicts the fact that equation (2) is oscillatory.

Next, we consider (b). For v ≥ u ≥ t3, one can easily find that

y(u) ≥ (v − u)2

2 y′′(v). (10)

Putting u = τ(t) and v = η(t) into (10), we obtain

y(τ(t)) ≥ (η(t)− τ(t))2

2 y′′(η(t)) for t ≥ t3. (11)

Using (11) in (7) gives

−y′′′(t) ≥ q(t)
(

(η(t)− τ(t))2

2

)β
(y′′(η(t)))β .

With Z(t) = y′′(t) > 0, the last inequality yields

Z ′(t) + q(t)
(

(η(t)− τ(t))2

2

)β
Zβ(η(t)) ≤ 0. (12)

The rest of the proof is similar to that of Case (a) and hence is omitted.
Case (II). Suppose that y(t) < 0 for t ≥ t2. Let z(t) = −y(t) > 0 for t ≥ t2. Then, from equation (1),

we see that
z′′′(t) = q(t)xβ(τ(t) > 0 for t ≥ t2. (13)

Since z(t) > 0 and z′′′(t) > 0, by Kiguradze’s Lemma (see [8]), we get z′(t) > 0. From the definition of
z(t), and the fact that y′′(t) > 0 for t ≥ t3, we see that z′′(t) < 0 for t ≥ t3. Thus, in view of z(t) > 0,
z′(t) > 0 and z′′(t) < 0, there exist θ ∈ (0, 1) and a t4 ≥ t3 such that

z(t) ≥ θtz′(t) for t ≥ t4,

and so
z(h(t)) ≥ θh(t)z′(h(t)), t ≥ t5 ≥ t4, (14)

where we assume h(t) ≥ t4 for t ≥ t5. From the definition of y(t), we have

z(t) = −y(t) = p(t)x(σ(t))− x(t) ≤ p(t)x(σ(t)),
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and so
x(σ(t)) ≥ z(t) or x(t) ≥ z(σ−1(t)).

Using this inequality in (13), we obtain

z′′′(t) ≥ q(t)zβ(σ−1(τ(t)) = q(t)zβ(h(t)). (15)

Integrating (15) from t to u ≥ t and letting u→∞, we get

−z′′(t) ≥
∞∫
t

q(s)zβ(h(s))ds

≥ zβ(h(t))
∞∫
t

q(s)ds. (16)

Using (14) in (16), we obtain the inequality

−z′′(t) ≥ (θh(t))β (z′(h(t)))β
∞∫
t

q(s)ds. (17)

With W (t) = z′(t) > 0, (17) becomes

W ′(t) + (θh(t))β
 ∞∫
t

q(s)ds

W β(h(t)) ≤ 0. (18)

The rest of the proof is similar to that of Case (a) and hence is omitted. This completes the proof.
Next, applying the results established in [9] to Theorem 2.1, we get the following corollary.
Corollary 2.1 : Let β = 1. If

lim inf
t→∞

∫ t

τ(t)
τ2(s)q(s)ds > 2

e
,

lim inf
t→∞

∫ t

η(t)
(η(s)− τ(s))2

q(s)ds > 2
e
,

and
lim inf
t→∞

∫ t

h(t)
h(s)

(∫ ∞
s

q(v)dv
)
ds >

1
e
,

where h(t) and η(t) are as in Theorem 2.1, then equation (1) is oscillatory.
Corollary 2.2 : Let β < 1. If ∫ ∞

t0

τ2β(s)q(s)ds =∞,∫ ∞
t0

(η(s)− τ(s))2β
q(s)ds =∞,

and ∫ ∞
t0

(h(s))β
(∫ ∞

s

q(v)dv
)
ds =∞,

where h(t) and η(t) are as in Theorem 2.1, then equation (1) is oscillatory. The above corollary follows
from (9), (12) and (18); we omit its proof.

Next, we present the following interesting result.
Theorem 2.2 : If

lim sup
t→∞

(
τ2β(t)

∫ ∞
t

q(s)ds
)
>

{
2, if β = 1,
0, if β < 1,

(19)
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lim sup
t→∞

(∫ t

τ(t)
(τ(t)− τ(s))2β

q(s)ds
)
>

{
2, if β = 1,
0, if β < 1,

(20)

and

lim sup
t→∞

(
(h(t)(t− h(t)))β

∫ ∞
t

q(s)ds
)
>

{
1, if β = 1,
0, if β < 1,

(21)

where h(t) is as in Theorem 2.1, then equation (1) is oscillatory.
Proof : Let x(t) be a nonoscillatory solution of (1), say x(t) > 0, x(τ(t)) > 0 and x(σ(t)) > 0 for t ≥ t1

for some t1 ≥ t0. As in the proof of Theorem 2.1, we again have two cases to consider (I) y(t) > 0 or (II)
y(t) < 0 for t ≥ t2. Suppose first Case (I) holds. Proceeding as in the proof of Theorem 2.1, we see that
(7) holds, and so we have two cases (a) or (b) to consider.

Suppose that (a) holds. Then, we again arrive at (8). Integrating (7) from t to u ≥ t and letting
u→∞, we get

y′′(t) ≥
(∫ ∞

t

q(s)ds
)
yβ(τ(t)).

Using (8) in the above inequality, we obtain

y′′(t) ≥
(∫ ∞

t

q(s)ds
)(

θ

2τ
2(t)y′′(τ(t))

)β
≥
(∫ ∞

t

q(s)ds
)(

θ

2τ
2(t)

)β
(y′′(t))β ,

which can be written as

(y′′(t))1−β ≥
(∫ ∞

t

q(s)ds
)(

θ

2τ
2(t)

)β
.

Taking the lim sup as t→∞ in the last inequality, we obtain a contradiction to (19).
Next, we consider case (b). Then, (10) holds for v ≥ u ≥ t3. For t ≥ s ≥ t3, putting u = τ(s) and

v = τ(t) into (10), we obtain

y(τ(s)) ≥ (τ(t)− τ(s))2

2 y′′(τ(t)). (22)

Integrating (7) from τ(t) to t and using (22), we see that

(y′′(τ(t)))1−β ≥
∫ t

τ(t)
q(s)

[
(τ(t)− τ(s))2

2

]β
ds.

Taking the lim sup as t→∞ in the last inequality, we obtain a contradiction to (20).
Next, assume that Case (II) holds. Then, as in the proof of Theorem 2.1, we see that (13), (14) and

(16) hold. Next, for t ≥ s ≥ t3, one can easily see that

z′(s) ≥ (t− s)(−z′′(t)),

and so
z′(h(t)) ≥ (t− h(t))(−z′′(t)) for t ≥ t4. (23)

Substituting (23) into (14) gives

z(h(t)) ≥ θh(t)(t− h(t))(−z′′(t)) for t ≥ t5.

Using this inequality in (16), we obtain

(−z′′(t))1−β ≥
(∫ ∞

t

q(s)ds
)
θβ (h(t)(t− h(t)))β .

Advances in Analysis, Vol. 4, No. 1, January 2019 5

Copyright © 2019 Isaac Scientific Publishing AAN



Taking the lim sup as t→∞ in the last inequality, we obtain a contradiction to (21). This completes the
proof.

Example 2.1 : Consider the nonlinear differential equation with nonpositive neutral term(
x(t)− 1

5x(t/2)
)′′′

+ 1
t3/2x

1/3(t/3) = 0, t ≥ 1. (24)

Here we have p(t) = 1/5, σ(t) = t/2, q(t) = 1/t3/2, β = 1/3, and τ(t) = t/3. Then, σ−1(t) = 2t and
h(t) = 2t/3. Next, with η(t) = t/2, we obtain∫ ∞

t0

τ2β(s)q(s)ds = 1
32/3

∫ ∞
1

ds

s5/6 =∞,∫ ∞
t0

(η(s)− τ(s))2β
q(s)ds = 1

62/3

∫ ∞
1

ds

s5/6 =∞,

and ∫ ∞
t0

(h(s))β
(∫ ∞

s

q(v)dv
)
ds = (16

3 )1/3
∫ ∞

1

ds

s1/6 =∞.

Thus, all conditions of Corollary 2.2 are satisfied and hence equation (24) is oscillatory.
Example 2.2 : Consider the linear differential equation with nonpositive neutral term(

x(t)− t

2t+ 1x(t/2)
)′′′

+ k

t3
x(t/3) = 0, t ≥ 1. (25)

Here we have p(t) = t/(2t + 1), σ(t) = t/2, q(t) = k/t3 with k > 36, β = 1, and τ(t) = t/3. Then,
1/3 ≤ p(t) ≤ 1/2, σ−1(t) = 2t and h(t) = 2t/3. As in the Example 2.1, it is easy to verify that all
conditions of Theorem 2.2 hold, and so equation (25) is oscillatory by Theorem 2.2.

Remark : The results of this paper can easily be extended to higher order equations of the form((
a(t) (x(t)− p(t)x(σ(t)))(n−1)

)γ)′
+ q(t)xβ(τ(t)) = 0, n is a positive integer,

a, p, q ∈ C ([t0,∞), R+), γ and β are the ratios of positive odd integers, and σ(t) and τ(t) are defined as
in this paper.
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