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Abstract. Studies on the advantageous effects of arbuscular mycorrhizal (AM) fungi are providing 
new possible ways to exploit them as biofertilizers in sustainable agriculture. Many studies have 
described the potential of root organ culture (ROC) system for production of AM fungal inocula. 
However there is a need for development of a suitable carrier formulation to support in vitro 
produced AM fungal inocula when mixed with substrate, so as to enable the delivery of inocula in the 
rhizosphere. The aim of this study was to assess the performance of the organic carrier formulation 
consisting of vermiculite as the main component along with cattle manure, wood powder and wood 
ash in different proportions; and its ability to retain inoculum potential of the in vitro produced AM 
fungal propagules of Rhizoglomus intraradices and Funneliformis mosseae. Treatment 5 comprising 
of carrier formulation (vermiculite: cow dung powder: wood powder: wood ash) in the ratio of 
20:8:2:1 was observed to be as the best carrier treatment for both the in vitro produced AM species. 
The in vitro produced propagules of both AM species were viable and effectively colonized the roots 
of Eleusine coracana Gaertn. The method established shows the efficiency of the carrier formulation 
in sustaining the inoculum potential of in vitro produced AM propagules for mass multiplication and 
possibility in application.  
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1    Introduction 

Arbuscular mycorrhizal (AM) fungi are ubiquitous soil fungi forming mutualistic symbiosis with plant 
roots. AM fungal extra-radical hyphal network spreading extensively in the soil and acting as an 
extension to the host’s root system in nutrient depletion zones has significant effects on overall host 
plant growth and development. Efficient exchange of nutrients is mediated via specialized structures 
within the root cortical cells (arbuscules). The basis of this symbiosis is the ability of AM fungi to form 
fine extra-radical hyphae in order to increase root-soil contact area as well as secrete enzymes/organic 
acids for improved nutrient acquisition [1]. In addition to improved uptake of soil minerals, other 
benefits ascribed to the host plant are improved water relations and disease resistance [2]. The beneficial 
effects of AM fungi on plant growth and nutrition have led to an increased use of AM fungal inoculum 
as biofertilizer [3]. Large scale AM fungal inoculum production is precluded due to their obligate 
biotrophic nature i.e. they must grow in symbiosis with living host plant roots in order to complete 
their life cycle and to produce infective propagules. AM fungal inoculum is presently produced in a 
variety of ways utilizing in vitro, greenhouse, or field-based methods [4-6]. The in vitro method 
comprises of monoxenic culture of sterilized AM fungal spores with Ri T-DNA transformed carrot roots 
[7]. The root organ culture (in vitro) system is preferred over the classical (pot/trap culture) method, 
permitting production of pure, viable, contamination free propagules in a smaller space. 

AM fungal inoculum is commercially available in a variety of forms ranging from high concentrations 
of AM fungal propagules in carrier materials to potting media containing inoculum at low 
concentrations [8]. Biofertilizers are usually prepared as carrier-based inoculants containing effective 
microorganisms [9]. A carrier is a delivery vehicle which is used to transfer live microorganism from an 
agar slant to the rhizosphere [10]. A suitable biofertilizer carrier should comprise of certain characteristic 
features viz., it should be in powder or granular form, should support the growth and survival of the 
microorganism, should be able to release the functional microorganism easily into the soil, should have 
high moisture absorption and retention capacity, should have good aeration characteristics and pH 
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buffering capacity [11]. Besides it should be non-toxic and environmentally friendly, should be easily 
sterilized and handled in the field, have good long term storage qualities, and should be inexpensive [12, 
13]. Considering the above mentioned features it is apparent that not a solitary universal carrier is 
available which fulfills all the desirable characteristics, but good quality ones should have as many as 
possible.  

AM fungal inoculum comprises of spores, colonized root fragments and mycelium/hyphae. Isolated 
AM fungal spores and hyphae can then be mixed with the carrier material. The carrier materials can be 
organic, inorganic or synthetic. Commonly used carriers include soils like peat, coal, pumice or clay, 
sand, and lignite; inert materials like perlite, vermiculite, soilrite, alginate beads, polyacrylamide gels 
and bentonite [14-19]. Organic wastes from animal production and agriculture, and byproducts of 
agricultural and food processing industries such as charcoal, composts, farmyard manure, cellulose, 
soybean meal, soybean and peanut oil, wheat bran, press mud, corn cobs also meet the requirements of a 
biofertilizer carrier and thus could be good carrier materials [20, 21]. It is also possible to find carrier 
combinations comprising of a mixture of soil and compost; soil, peat, bark, and husks among others [18]. 
Peat is the most commonly used carrier material. However, it is a limited natural resource which is not 
readily available worldwide and its use has a detrimental effect on the environment from which it is 
extracted. This highlights the need for development of new carrier formulations using alternative 
resources to compete with the existing inoculants [22].  

In this study we assessed the performance of the carrier formulation consisting of vermiculite as the 
major component along with cattle manure, wood powder, and wood ash. Thus, we evaluated the ability 
of this organic carrier formulation to sustain in vitro produced AM fungal propagules so as to colonize 
the host plant roots.  

2    Materials and Methods 

2.1   AM Fungal Inoculum 

The indigenous AM fungal isolates (Rhizoglomus intraradices and Funneliformis mosseae) obtained 
from Goa University Arbuscular Mycorrhizal Culture Collection (GUAMCC) were used in the study. 
These isolates were propagated separately in pot cultures using Plectranthus scutellarioides (L.) R.Br. 
(coleus) (Lamiaceae) as the host plant. They were grown in soil-sand (1:1) mixture and maintained 
under controlled green-house conditions (25°C, RH 80–90%) with no supplementary lighting.  

Spores of R. intraradices and F. mosseae were extracted from the soil by wet sieving and decanting 
technique [23]. Isolated spores were then rinsed twice in sterile distilled water and disinfected in 250µl 
sodium hypochlorite for 3-5 min. This step was followed by triple rinsing with sterile distilled water and 
a 10 min sterilization bath in an antibiotic solution (streptomycin sulfate 0.02% w/v and gentamycin 
sulfate 0.01% w/v) [7, 24].  

The surface-sterilized spores were plated onto modified Strullu–Romand (MSR) medium [25] for 
germination, and the Petri plates were incubated in an inverted position in the dark at 27oC. For the 
establishment of mycorrhizal association, an actively growing Ri T-DNA transformed root of Cichorium 
intybus L. or Linum usitatissimum L. with several lateral branches was placed in the vicinity of the 
germinated spore and incubated in an inverted position in the dark at 27oC.  

For isolation of monoxenically cultured spores of R. intraradices and F. mosseae, a small piece of gel 
containing twenty in vitro produced spores with extra-radical mycelia was cut and added to 25ml citrate 
buffer (0.01 M) to dissolve the gel under sterile conditions [26]. The spores along with the attached 
extra-radical mycelia were then used as inocula. 

2.2   Carrier Preparation 

For formulation of the carrier, initially sterilized sand and vermiculite were used separately as base 
components to formulate the carrier supplemented with sterilized cow dung powder, wood powder and 
wood ash in different proportions (Table 1).  
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Table 2. Carrier formulations in various ratios and percentages 

Treatments  Vermiculite Cow dung powder Wood powder Wood ash 
1 
 

20 
(60.60 %)

8
(24.24 %)

3
(9.09 %)

2 
(6.06 %) 

2 20 
(74.07 %)

4
(14.81 %)

2
(7.40 %)

1 
(3.70 %) 

3 20 
(100.00 %)

- - - 

4 20 
(62.50 %)

8
(25.00 %)

2
(6.25 %)

2 
(6.25 %) 

5 20 
(64.51 %)

8
(25.80 %)

2
(6.45 %)

1 
(3.22 %) 

6 20 
(62.50 %)

8
(25.00 %)

3
(9.37 %)

1 
(3.12 %) 

7 20 
(68.96 %)

4
(13.79 %)

3
(10.34 %)

2 
(6.89 %) 

8 20 
(71.42 %)

4
(14.28 %)

3
(10.71 %)

1 
(3.57 %) 

9 20 
(71.42 %)

4
(14.28 %)

2
(7.14 %)

2 
(7.14 %) 

10 20 
(80.00 %)

- 3
(12.00 %)

2 
(8.00 %) 

11
 

20 
(83.33 %)

- 3
(12.50 %)

1 
(4.16 %) 

12 20 
(83.33 %)

- 2
(8.33 %)

2 
(8.33 %) 

13 20 
(86.95 %)

- 2
(8.69 %)

1 
(4.34 %) 

14 20 
(90.90 %)

- - 2 
(9.09 %) 

15 20 
(95.23 %)

- - 1 
(4.76 %) 

16 20 
(86.95 %)

- 3
(13.04 %)

- 

17 20 
(90.90 %)

- 2
(9.09 %)

- 

18 20 
(71.42 %)

8
(28.57 %)

- - 

19 20 
(83.33 %)

4
(16.66 %)

- - 

Note: - : absent 

2.3   Experimental Setup 

The experiment was set up using deep cell plug trays for a period of 3 months. Twenty in vitro 
produced spores of R. intraradices along with colonized transformed chicory (Cichorium intybus L.) 
roots and F. mosseae spores along with colonized transformed linum (Linum usitatissimum L.) roots 
were used as inocula in each deep cell plugs containing the carrier formulations and planted with pre-
germinated seeds of Eleusine coracana Gaertn. (Poaceae) used as host plant. The plants were 
maintained in the phytotron (Daihan Labtech, LGC-6201G) at 260 lux (16 h photoperiod), 26oC, 41.1 % 
humidity and 100 ppm CO2 and fertilized with Hoagland’s solution [32] minus phosphorus (P) every 20 
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days. Six replicates were considered for each treatment. As the replicates were in a single tray, the trays 
were repositioned at the end of every week. 

2.4   Data Collection and Analysis 

After 3 months of growth, the roots of E. coracana plants were assessed for colonization using Trypan 
blue staining technique [33]. Various parameters viz., average number of entry points in 1cm root 
segment, root length, total number of infective propagules as per Fertilizer (Control) Order, 1985 [34] 
and percent colonization [35] were calculated.  

2.5   Formulas 

Total number of infection points or infective propagules (IP)= average number of entry points formed in 
1 cm root segment × total root length (Extrapolate the IP present as numbers per gram of substrate or 
inoculum) 

% colonization = number of root fragments colonized ÷ total number of root fragments observed × 
100 

2.6   Statistical Analysis 

The experimental data were subjected to one-way analysis of variance (ANOVA) followed by Tukey 
post-Hoc pairwise comparison test. Parameters were correlated using Pearson’s correlation. Statistical 
Package for Social Sciences (SPSS) (ver. 22.0 Armonk, NY: IBM Corp.) was used for all statistical 
analyses.  

3    Results 

3.1   Physico-Chemical Characterization of the Materials Used for Carrier Formulation 

Physico-chemical properties of the carrier materials are depicted in Table 3. It was observed that the 
materials used for formulation of carrier had different characteristics. Cow dung powder had higher 
amount of organic carbon (OC) and P, while wood ash had higher potassium (K) content. The micro-
nutrient contents were higher in cow dung powder as compared to wood ash except for copper (Cu). 
Sterilized vermiculite was used as base component to formulate the carrier supplemented with sterilized 
cow dung powder, wood powder and wood ash in different proportions. In all, 19 different formulations 
were prepared by mixing the ingredients with vermiculite in order to review favorable or unfavorable 
effects of each material in the combination.  

Table 3. Physico-chemical parameters of carrier materials 

Carrier material pH E.C. 
m.mhos/cm 

Macro-nutrients Micro-nutrients (ppm) 
 Organic 

Carbon* %
Phosphorus*

Kg/Ha 
Potassium* 

Kg/Ha 
Zinc* Iron* Manganese* Copper* Boron*

Vermiculite 7.50 <1 0.78 
±0.08 

10.90 
±0.43 

170.80 
±3.27 

0.54
±0.04

1.13
±0.40

17.27 
±0.04 

0.26 
±0.04 

1.30
±0.40

Cow dung 
powder 

6.60 2.80 4.07 
±1.13 

1038.00 
±9.00 

2952.00 
±93.00 

4.41
±0.43

14.44
±0.15

25.54 
±0.25 

1.25 
±0.55 

50.60
±0.30

Wood powder 5.80 <1 1.91 
±0.08 

92.90 
±0.99 

185.90 
±1.10 

3.27
±0.07

2.84
±0.75

1.91 
±0.07 

0.22 
±0.08 

13.40
±0.30

Wood ash 10.30 12.20 0.65 
±0.07 

65.60 
±3.80 

4435.20 
±7.10 

4.10
±0.20

10.85
±0.35

7.23 
±0.02 

25.00 
±0.10 

25.30
±0.40

*Values are means of three replicates ± standard deviation.  
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3.2   In Vitro Produced AM fungal Inoculum and Its Germination/Inoculum Potential 

Sporulation in monoxenic cultures of R. intraradices was observed 18-20 days after association with 
transformed chicory roots and continued up to 7 months. In monoxenic cultures of F. mosseae, 
sporulation was initiated 15-20 days after association with transformed linum roots and continued up to 
7 months. It was observed that in vitro produced spores of both AM species showed maximum 
germination potential at 28 weeks (i.e. fully matured spores at 197 days) that exhibited maximum 
germination when placed on MSR medium and hence were selected for preparation of inocula. 

3.3   Effect of Different Carrier Treatments on Re-inoculation/Colonization Potential of In 
Vitro Produced AM Fungal Inoculum 

The in vitro produced spores of R. intraradices and F. mosseae along with the attached extra-radical 
mycelia were used separately as inocula to colonize E. coracana plants. For R. intraradices, maximum 
number of entry points (13) per root segment in E. coracana were recorded in treatment 5 while for F. 
mosseae, the maximum number of entry points (7.33) per root segment in the same host plant were also 
recorded in the same treatment (Table 4). Similarly, the total number of infective propagules was 
highest (148 infection points/g of inoculum used) for R. intraradices in treatment 5 while for F. mosseae, 
it was highest (127 infection points/g of inoculum used) in the same treatment (Table 4). Percent 
colonization was highest (100%) in treatment 5 for both the AM species (Table 4). Treatment 5 was 
found to be optimum for both the species. 

Table 4. Average number of entry points, average root length, infectivity potential and percent colonization in 
roots of E. coracana plants inoculated with R. intraradices and F. mosseae 

Treatment Average number of entry 
points* 

Average root length* 
(cm) 

Total number of infective 
propagules* (IP) 
(g-1 of inoculum) 

Percent colonization* 
(%) 

R. 
intraradices 

F. mosseae R. 
intraradices

F. mosseae R. intraradices F. mosseae R. 
intraradices 

F. mosseae

1  6.00 de ± 
0.00 

5.50 cd ± 
0.14 

2.38 a ± 1.02 2.69 a ± 
0.62 

85.68 de ± 3.78  88.77 ef ± 3.34 80.71 de ± 
5.81 

 80.20 e ± 
4.56 

2 5.33 efg ± 
0.51 

5.60 cd ± 
0.13 

3.06 a ± 0.62 2.68 a ± 
0.61 

 97.85 c ± 9.03 90.04 def ± 
4.44 

 86.57 c ± 
7.06 

85.15 cd ± 
3.49 

3  6.50 d ± 0.54 4.38 fg ± 
0.32 

1.95 a ± 0.82 2.70 a ± 
0.80 

76.05 fgh ± 8.00  70.95 hi ± 8.00  70.00 g ± 
5.51 

62.48 gh ± 
4.25 

4  6.50 d ± 0.54 5.60 cd ± 
0.08 

2.43 a ± 1.15 3.03 a ± 
0.59 

95.16 cd ± 9.04 101.80 bc ± 
4.07 

90.00 bc ± 
6.32 

82.85 cde ± 
6.92 

5  13.00 a ± 
0.00 

7.38 a ± 
0.13 

1.90 a ± 0.71 2.86 a ± 
0.57 

148.20 a ± 9.11 126.64 a ± 
10.88 

100.00 a ± 
0.00 

 100.00 a ± 
0.00 

6 5.00 fgh ± 
0.00 

6.05 bc ± 
0.49 

2.79 a ± 0.74 2.45 a ± 
1.11 

 83.70 ef ± 7.60 88.93 ef ± 6.26  78.42 e ± 
7.13 

 81.86 de ± 
3.50 

7  9.00 c ± 0.00 7.05 a ± 
0.49 

1.83 a ± 0.78 2.29 a ± 
0.94 

 98.82 c ± 7.77 96.86 cd ± 8.19 90.57 bc ± 
4.54 

 87.44 c ± 
6.30 

8 5.33 efg ± 
0.51 

5.60 cd ± 
0.08 

2.93 a ± 0.53 2.85 a ± 
0.50 

93.70 cd ± 5.79 95.76 cde ± 
7.11 

85.28 cd ± 
8.92 

 85.15 cd ± 
3.49 

9  11.00 b ± 
1.89 

 7.05 a ± 
0.49 

1.98 a ± 0.81 2.48 a ± 
0.98 

130.68 b ± 22.86 104.90 b ± 8.02  93.33 b ± 
6.06 

 94.76 b ± 
1.42 

10  6.50 d ± 1.64 5.05 de ± 
0.77 

1.97 a ± 0.81 2.57 a ± 
0.81 

76.83 efg ± 8.30 77.87 gh ± 6.77 66.06 gh ± 
4.92 

 66.35 fg ± 
5.57 

11  6.00 de ± 
1.09 

4.63 ef ± 
0.49 

2.16 a ± 0.91 2.80 a ± 
0.48 

77.76 efg ± 5.45  77.78 g ± 5.34  70.63 g ± 
5.57 

 67.53 f ± 
4.74 
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12  4.33 hi ± 
0.51 

 5.33 d ± 
0.18 

2.58 a ± 0.90 2.71 a ± 
0.42 

 67.02 h ± 6.64  86.66 f ± 4.97  62.31 h ± 
7.10 

 67.77 f ± 
5.44 

13 4.66 ghi ± 
0.51 

 4.05 g ± 
0.49 

2.41 a ± 1.06 2.80 a ± 
0.56 

 67.38 h ± 7.03  68.04 ij ± 4.49  62.66 h ± 
4.84 

 61.42 h ± 
5.35 

14  2.00 j ± 1.09  2.05 h ± 
1.02 

1.88 a ± 0.72 1.70 a ± 
0.77 

 22.56 j ± 1.63  20.91 l ± 5.07  14.18 j ± 
2.26 

 9.97 k ± 
6.16 

15  2.00 j ± 0.89  2.08 h ± 
0.59 

2.00 a ± 1.03 1.99 a ± 
1.03 

 24.00 j ± 6.08  24.83 l ± 6.33  11.64 j ± 
3.62 

 14.77 j ± 
4.74 

16 5.00 fgh ± 
0.00 

 4.05 g ± 
0.64 

2.33 a ± 0.97 1.96 a ± 
1.07 

 69.90 gh ± 3.11  47.62 k ± 3.35  60.78 hi ± 
6.76 

 59.50 h ± 
3.87 

17  4.00 i ± 0.63 5.05 de ± 
0.49 

2.38 a ± 1.02 2.01 a ± 
1.01 

 57.12 i ± 9.37  60.90 j ± 3.29  56.74 i ± 
3.27 

 53.48 i ± 
3.79 

18 5.66 def ± 
1.03 

 6.38 b ± 
0.44 

2.41 a ± 1.20 1.85 a ± 
0.91 

 81.80 ef ± 6.33  70.81 i ± 4.67  76.58 ef ± 
4.01 

 60.41 h ± 
5.10 

19 4.66 ghi ± 
0.51 

6.05 bc ± 
0.64 

2.79 a ± 0.54 1.84 a ± 
0.92 

78.00 efg ± 5.00  66.79 ij ± 4.69  71.53 fg ± 
5.55 

 58.09 hi ± 
4.67 

*Values are means of six replicates ± standard deviation. Values in the same column not sharing the same letters 
are significantly different (P ≤ 0.05) 
 

As treatment 5 was observed to be the optimum for both AM species, physico-chemical parameters of 
treatment 5 were analyzed. Physico-chemical parameters of treatment 14 and 15 were also analyzed 
which showed least AM fungal infection on the whole (Table 5). 

Table 5. Physico-chemical parameters of carrier formulations (treatments 5, 14, 15) 

Treatments pH E.C. 
m.mhos/cm

Macro-nutrients Micro-nutrients (ppm) 
Organic 
Carbon% 

Phosphorus 
Kg/Ha 

Potassium 
Kg/Ha 

Zinc Iron Manganese Copper Boron

5 8.20 1.70 2.55 371.70 2360.00 3.75 7.44 20.74 1.70 5.30
14 9.60 1.20 0.30 229.90 3946.00 58.40 1.74 153.70 303.90 30.42
15 9.20 0.60 0.32 130.40 3472.00 8.17 3.00 101.60 15.62 8.79

 
Analysis of variance was calculated to compare the effect of the carrier treatments on percent 

colonization by AM fungal species. Analysis of variance revealed that the effect of carrier treatment on 
percent colonization by both the AM species was significant, F (18, 95) = 106.090, p ≤ 0.05 for R. 
intraradices and F (18, 95) = 152.678, p ≤ 0.05 for F. mosseae (Table 6). 

Table 6. Analysis of variance for percent colonization 

  R. intraradices F. mosseae 
Source df* SS* MS* F P SS* MS* F P

Between 18 59503.949 3305.775 106.090 ≤ 0.05 59931.998 3329.555 152.678 ≤ 0.05
Within 95  2960.222 31.160 2071.726 21.808  
Total 113 62464.171  62003.724  

*df degrees of freedom; SS sum of squares; MS mean square 
 

A Pearson product-moment correlation coefficient was computed to assess the relationship between 
the infective propagules and percent colonization by both the AM fungal species. There was a positive 
correlation between the two variables [r = 0.926, n = 19, p ≤ 0.01] for R. intraradices and [r = 0.978, n 
= 19, p ≤ 0.01] for F. mosseae. Overall, a strong positive correlation between the infective propagules 
and percent colonization was observed (Figure 2; Figure 3). 
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44, 45]. Addition of organic residues to the substrate is known to increase AM fungal sporulation hence 
leading to increased inoculum production [46-49]. Douds et al. [8] successfully produced AM fungal 
inoculum in compost mixed with vermiculite, perlite, or horticultural potting media and observed that 
the propagule numbers were maximum in vermiculite based media. They reported that the laminar 
sheets of vermiculite create favorable conditions for growth and persistence of AM fungal hyphae since 
similar spore populations and colonization of roots among the three media amendments were observed. 
The carrier formulation developed in our study offers several other benefits in addition to maintaining 
the inoculum potential of in vitro produced AM fungal propagules. The carrier materials with the 
exception of vermiculite are organic in nature besides providing macro- and micro-nutrients, increase 
substrate permeability and improve water retention.  

Physico-chemical characterization of treatment 5 revealed that although the treatment had high 
concentration of nutrients especially P, it did not affect AM colonization. Bolan and Robson [50] 
reported significant effects of increased P supply resulting in increased formation of mycorrhizal 
structures. Addition of P increased both root growth and the percentage of root length colonized by AM 
fungi. If AM fungal isolates are produced in organic substrate with high P levels it is likely that the 
isolates will be more adapted to conditions of high P [51, 49]. However, the overall least AM fungal 
interaction was observed in treatments 14 and 15. This may be attributed to the absence of cow dung 
and wood powder in the treatments. The physico-chemical characterization of treatments 14 and 15 
revealed high levels of K, Zn, Mn, Cu and B as compared to the optimum carrier formulation 
(treatment 5). High concentrations of Zn, Mn, Cu, B and K suppress spore germination, root 
colonization and mycelial growth of AM fungi [52-56].  

In the present study, a strong positive correlation between the infective propagules and percent 
colonization was observed. The importance of entry points for the development of mycorrhizal structures 
within the roots and ensuing overall effectiveness of AM fungi is well known [57]. After spore 
germination, the AM fungal hyphae grows towards the host plant roots [58, 59], followed by penetration 
into the root cortical cells and leading to formation of intra-radical structures. Scervino et al. [60, 61] 
reported a close relationship between the number of entry points and the degree of colonization.  

5    Conclusion 

Both the isolates used in the present investigation were highly infective and efficient in stimulating 
colonization and sporulation when re-inoculated with the carrier formulation. This study reports the 
successful formulation of AM inocula using organic based carrier materials. Such an attempt indicates a 
strong possibility for enhancing plant growth and productivity. Further studies in this direction are in 
progress.  
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