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Abstract. In light of the latest research developments, this paper describes the fundamental 
principles of the astronomic theory of climate change. It comprises three problems: the evolution of 
the orbital motion, the evolution of the Earth’s rotational motion and the evolution of the insolation 
controlled by the evolutions of those motions. All the problems have been solved in a new way and 
other methods. The paper demonstrates geometric parameters of the Earth’s insolation by the Sun, 
and explains a new insolation theory. Its results are identical to the results of the previous theory. 
The equations of orbital movement are established, is told about their solution and the results for the 
different periods of time are submitted. These results improve the results of the previous theories: the 
planets’ and the Moon’s orbits are stable and the Solar system is stable. In much the same way, the 
problem of the Earth’s rotation is described. Unlike the previous papers, this problem is solved here 
without simplification. The calculations demonstrate significant oscillation of the Earth’s axis. These 
results were confirmed with other three independent solutions of the Earth’s rotation problem. The 
oscillations of the Earth’s axis result in such oscillations of insolation that explain the paleoclimate 
changes. The material in this paper is presented in a format intelligible for a broad audience. 
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1   Introduction 

The Earth’s history is marked by numerous iterations of warm and cold spells [1]-[2]. A glacier that used 
to cover the north and midland of Europe melted ten thousand years ago. On the other hand, polar 
areas that are now almost inanimate used to be covered by rich vegetation with trees, as well as 
populated by abundant fauna, such as mammoths, wooly rhinoceroses, buffalos, horses and other 
animals. What is the reason for this sort of climate fluctuations on the Earth? 

Back in the 19th century, Louis Agassiz [3], J. Adhemar [4], James Croll [5] and others fathered the 
idea that changes of the Earth’s orbit parameters and its rotation axis may entail change in the amount 
of heat reaching the Earth’s surface from the Sun in different latitudes. By the end of the 19th century, 
accomplishments in mathematical astronomy enabled the scientists to calculate changes of orbital and 
rotational parameters of the Earth, and in the beginning of the 20th century Milutin Milankovitch [6] 
completed work on his Astronomical Theory of Ice Ages, which is, in essence, an astronomical theory of 
climate change. In this theory, Milankovitch calculates the Earth’s insolation in different latitudes based 
on three parameters: eccentricity e of the Earth’s orbit, perihelion angular position φpγ and obliquity . 

Radiation of the Earth by the Sun and the value of resulting heat on the surface is commonly known 
as insolation (in-sol, where in is a verb prefix with a meaning of “bring”, “lead”, and solis is sun). At the 
same time, we must bear in mind that the same process has other aspects denoted by different terms, 
such as irradiation, illumination, radiation, etc. Insolation may be expressed for different time periods, 
including momentary, daily, seasonal, half-year, or yearly insolation. 

Inasmuch as parameters e, φpγ and  change and fluctuate within periods of tens of thousands of 
years, insolation values from age to age may be calculated, for example, for the warm half-year period at 
the latitude of 65°, and the change of insulation values may lead to certain conclusions on climate 
change. However, the fluctuation amplitude for eccentricity e and obliquity  in the Milankovitch theory 
was fairly small. For example, the angle  fluctuated within the range of ± 1°. Such oscillations could 
result in temperature fluctuations also in the range of 1-2°C. This is why the astronomical theory of 
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climate change has caused doubt among the researchers [7] of paleoclimate both at the times of 
Milankovitch and today. 

After M. Milankovitch, his research was repeated by several groups of researchers [8]-[13] at intervals 
of several decades. They updated the evolution of parameters e, φpγ and  and extended the initial 
calculation for the past 600 thousand years [6] over a longer period, such as 30 million years [10]. Still, 
the main result, i.e. oscillation of eccentricity e and obliquity , remained fairly insignificant. 

It was found in the second half of the 20th century that marine sediments demonstrate oscillations of 
the quantity of oxygen isotope O18. Vast research was carried out all across the global ocean. Results of 
this research were summarized in the form of standard relations of relative oxygen isotope concentration 

Oδ 18 versus sediment thickness associated with time T [14]. These relations were named using initial 
letters of CLIMAP [16] project or names of the authors of LR-4 [15]. It is believed that lighter isotope 
O16 contained in the water evaporates and accumulates in glaciers. In this context, it was assumed that 
surplus of oxygen isotope O18, i.e. excess of Oδ 18 above the mean level, is proportionate to the volume 
of ice accumulated in the Earth’s ice cover. 

One of the major periods on the Oδ 18 curve is 100 million years. It is close to one of the periods of 
change in the Earth’s orbit eccentricity e. Therefore, it was identified that eccentricity e has a 
significant impact on the Earth’s climate. For example, study [7] even claims that M. Milankovitch does 
not take into account the direct impact of eccentricity on the Earth’s climate. In fact, the insolation 
theory that was developed by Milankovitch identifies a mathematically strict dependence of insolation 
on parameters e, φpγ and  [17]. On the other hand, a lot more has to be done to determine the 
developments and causes of establishment of certain properties of marine sediments, glacial cores of 
contemporary glaciers, and other paleoclimatic data arrays. The same work has to be done to identify 
reliability of findings offered by the astronomical climate theory. This is what we have been working on 
at the Institute of the Earth Cryosphere for the past two decades. 

Astronomical climate theory is based on the computation of body interactions. For that reason, to 
make sure our findings are valid, we studied the fundamentals of mechanics, tried to remove the odd 
stuff and keep what is necessary [18]. The astronomical theory of the Earth’s climate includes such 
elements as the problems of orbital motion of bodies and rotational motion of the Earth, as well as the 
problem of the Earth’s insolation as function of the parameters of its orbital and rotational motions. 

We mentioned above that several generations of researchers consistently repeated the studies of M. 
Milankovitch. Still, they all followed the same path that had been developed in mathematical astronomy 
over centuries. We take a different path. We do not copy equations of our predecessors but derive them 
on the basis of fundamental principles. Second, we seek to employ minimum simplification in our 
derivations. And third, we solve problems using numerical procedures, aiming to employ their most 
accurate variations or create new ones. In this study, the Astronomical theory of the climate change is 
presented in the results that we have obtained. In the beginning, we will speak about insolation of the 
Earth, and then about the evolution of the orbital motion and evolution of the Earth’s axis. As regards 
the first two problems, our independent studies confirm findings of our predecessors, while the results of 
the rotational motion study are different. The oscillation amplitude of obliquity  is seven times greater 
than the value identified by pervious theories. These oscillations result in such fluctuations of insolation 
that can explain the past climate changes. This significant difference in the results of the Earth rotation 
problem requires a comprehensive verification. The final part of this study will focus on the verification 
of solutions of the Earth rotation problem. 

2   Geometric Characteristics of Insolation 

Let us place observer M in the center of celestial sphere 1 (see Fig. 1). Its horizon crosses the celestial 
sphere in circle HH. A perpendicular to the plane of the horizon crosses the celestial sphere at the point 
of zenith Z. The Earth’s axis of rotation marked by the Earth’s angular velocity vector E

  crosses the 
celestial sphere at the point of the north pole N. Angle  formed by E

  and the plane of horizon 
represents the observer’s latitude. Bear in mind that the angle of arc of the sphere’s great circle is equal 
to the central angle between the radii of its ends, e.g., arc φ equals HMN. 

Annual movement of the Sun S projects onto the celestial sphere 1 an ecliptic circle EE in counter-
clockwise direction. This elliptic circle intersects the equator circle AA in points γ and ’γ . Longitude 
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of the Sun  is measured from point γ, which is the vernal equinox point. The distance between the 
Sun and equator AA is determined by declination . 

The Earth rotates around the axis MN in counter-clockwise direction. At the same time, the celestial 
sphere and the Sun perform daily rotation around this axis relative to the observer in clockwise direction. 
Thus, the Sun’s daily motion occurs along the circle SrMdSs, which is parallel to the equator circle. The 
Sun rises above the horizon in point Sr, arrives at point Md at noon and goes down over the horizon at 
point Ss. The Sun, which is not in the observer’s sight, arrives at point Mn at the noon time. The hour 
angle of the Sun  will be measured from the meridian passing through noon Md.  

 
Figure 1. Basic geometrical characteristics of the Sun S at irradiation of point M on the Earth’s surface: 1 is the 
celestial sphere; HH’ is the plane of the horizon; N is North pole; AA is the plane of the mobile equator; EE’ is the 
plane of the mobile ecliptic, and  is the angle between planes AA and EE’; Z is zenith of point M, and z = ZMS 
is the zenithal angle of the Sun; arc HN =  is the geographical latitude of point M; ω = MdNS is the hour angle 
of the Sun, measured from noon Md;  = SB is the declination of the Sun;  = S is the longitude of the Sun. 

In Fig. 1, the planes of equator AA’ and ecliptic EE’ are referred to as mobile planes because their 
positions change in time. 

Day length is proportionate to the length of arc SrMdSs, and night length corresponds to the length 
of arc SsMnSr. In the demonstrated position of the Sun S, the day is longer than the night. If the Sun S 
is on the equator in point γ or γ, then during the day it will move along the circle of equator AA. In 
this case, day and night lengths are equal. If the Sun S is in the southern part of the celestial sphere, its 
path beneath the horizon will be longer than the path above the horizon HH, i.e. the night will be 
longer than the day. 

 
Figure 2. Geometrical characteristics of the Sun S for observer M positioning at different latitudes  of the Earth’s 
surface: a is in transpolar latitudes; b is at the North Pole; c is at the equator: 1 is the celestial sphere; arrows show 
annual and daily motion of the Sun in the celestial sphere; other designation see Fig. 1. 
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Fig. 2a demonstrates the observer position in high latitude . In this case, daily circle MdS of the Sun 
S does not cross the horizon and is above it. When the Sun S is in the southern part of the sphere, its 
daily motion circle that is parallel to the equator will be below the horizon. Observer M will find 
themselves in the condition of polar night. When the Sun on the circle EE is in positions that are closer 
to points γ or γ, observer M will experience both day and night. 

When the observer is at the North Pole with φ = 90° (see Fig. 2b), the circle of horizon HH in the 
celestial sphere matches the circle of equator AA'. During the daytime, the daily motion of the Sun 
occurs along the circle parallel to the circles above. In this case, the circle of horizon on the celestial 
sphere matches the circle of equator AA'. There are no sunrises (point Sr) and sunsets (point Ss) at the 
pole. In the winter time, the daily motion of the Sun S' in Fig. 2b occurs below the horizon, i.e. the 
polar night sets at the pole. 

When the observer is on the equator with φ = 0° (see Fig. 2c), North Pole N is in the plane of 
horizon HH', and the point of zenith Z is in the plane of equator AA'. Daily motion of the Sun occurs 
along the circle SrMdSs parallel to the circle of equator AA'. At the points of sunrise Sr and sunset Ss, 
the Sun moves perpendicular to the horizon, so the day begins and ends almost instantaneously. 

3   Insolation of the Earth 

The angle of sunlight incidence z onto the plane of horizon HH (see Fig. 1) is measured from the line of 
zenith ZM. This angle is the smallest at noon Md (zmin), and at the points of sunrise Sr and sunset Ss, 
the zenith angle z = /2. The variation of the angle from /2 to zmin and from zmin to /2 defines the 
oscillation of solar radiation during the daylight. In this case, the amount of solar heat per one square 
meter of the Earth’ surface in unit time, i.e. the power of insolation, is calculated as follows [6][19][20]: 

 0
2

d cos
d

JW z
t 

    (1) 

where J0 = 1366.22 W/m2 is the flux of solar heat at the distance r from the Sun to the Earth that 
equals mean radius of the Earth’s orbit a; and  = r/a is the relative distance from the Sun. 

The value J0 is known as the solar constant, and formula (1) describes insolation of the Earth 
ignoring the atmospheric influence. If we express the zenith angle z in formula (1) through other angles 
and integrate the solar flux d / dW t  over the length of day [19][20], then daily insolation of the Earth 
will be expressed as follows: 

 0
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  (2) 

where  = 243600 is the length of day in seconds, and hour angle of day limit ω0 determined by arcs 
SrMd = SsMd (see Fig.1) depends on the angles φ and δ and is calculated as follows [19][20]: 
      0 arccos tan arcsi{ [ ( )n sin sin tan] }   (3) 

 
Figure 3. The Earth’s (E) motion along the orbit around the Sun (S):  is the point of vernal equinox; PE and AphE 
are the perihelion and aphelion of the Earth’s orbit, respectively; о is the polar angle of the Earth’s motion along 
the orbit; p is the angle of the Earth’s perihelion. 

Formulas (2) and (3) for daily insolation include longitude λ of the Sun and its distance r from the 
Earth. These values depend on the parameters of the Earth’s orbit (see Fig. 3). The Earth (E) moves 
along the orbit counter-clockwise. At the point of perihelion PE, its distance from the Sun is minimal 
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(Rp), and at the point of aphelion AphE is it maximal (Ra). Eccentricity of the orbit is determined on the 
basis of these distances: 
     /a p a pe R R R R     (4) 

In Fig. 1, the plane of the Earth’s orbit is in the plane of ecliptic EE', and the line Sγ of the orbit 
matches the line Mγ. The Sun S moves along the circle of ecliptic EE' relative to the Earth located in 
point . This is why images of the Earth in Fig. 1 will mirror the Sun. In spring, the Sun is in point М γ, 
and the Earth is in point 'γ , if the Sun S is in point .М  Planes of equator and the Earth’s orbit change 
in space, which is why point  moves on the Earth’s orbit (Fig. 3). Position of perihelion PE also moves 
on the orbit regardless of point . Angle p will be measured between these two points  and PE. 

 
Figure 4. Distribution of specific heat GJ/m2 across the Earth’s latitude in the contemporary epoch (1950): QS is 
over the summer caloric half-year; QW is over the winter caloric half-year; QT is over the entire year: QT in the 
graph is halved;  > 0 is the northern hemisphere;  < 0 is the southern hemisphere; Mil is the calculations by M. 
Milankovitch. 

 

Figure 5. Parameters of the Earth’s orbit and axis in the fixed equatorial (x,yz) and ecliptic (x1y1z1) coordinate 
systems. 1 is the celestial sphere; fixed planes in epoch T0: 2 is the Earth equator, 3 is the Earth orbit (ecliptic 
plane); mobile planes in epoch T: 4 is the Earth equator, 5 is the Earth orbit; unit vectors: N


 is the Earth axis, 

S


 is the axis of the Earth’s orbit; M


 is the vector of the Solar system’s angular momentum;  is the point of 
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vernal equinox in ear T0; B is the position of perihelion on the celestial sphere;  = 02 is the angular distance of 
the orbit’s ascending node; р = 2B is the angular distance of perihelion; i is the angle of inclination of the orbital 
plane against the plane of fixed equator.  

New understanding of the orbital motion [21] has led to the development of an algorithm for 
calculating parameters r and λ that determine the value of daily insolation (2). A program was 
developed to calculate insolation on any day of the year, during a season, half-year, and year [19][20]. 
This program also enables determination of other elements of insolation. Fig. 4 describes the change by 
latitude φ° of the summer QS, winter QW and halved annual QT insolation in the contemporary epoch. 
Annual insolation QT declines steadily from the equator towards the poles. At the poles, the value of 
insolation is 2.4 times smaller than at the equator. Winter insolation QW near the equator is maximal, 
shrinking to zero at the poles. Summer insulation QS is maximal near the tropical latitudes ( =   = 
 23.4) and minimal at the poles. In the contemporary epoch, summer insolation QS at the North Pole 
is smaller than at the South Pole, as shown in Fig. 4. Also, summer insolation in the northern tropics is 
1.04 times smaller than in the southern tropics. 

The program used for calculation of all the insolation elements can be freely accessed at 
http://www.ikz.ru/~smulski/Data/Insol/ [20]. It is based on our insolation calculation algorithm which 
is more convenient than the one developed by Milankovitch. In terms of quantity, the results of these 
two theories typically coincide, as shown in Fig. 4. 

Angular parameters and distance  that are part of the daily insolation formula (2) depend on the 
parameters of the Earth’s orbit and axis of its rotation, which tend to change in time, as stated above. 
Circles on the celestial sphere in Fig. 5 demonstrate planes of the Earth’s equator 2 and orbit 3 fixed in 
a certain epoch, such as year 2000. The angle between these planes equals 0. In a different epoch, the 
equator plane will move to position 4, and the orbit plant – to position 5, and the angle between these 
planes will equal . Seeking to determine behavior of parameters included in the formula of insolation 
(2), we must solve two tasks, specifically calculate the change of 1) orbital and 2) rotational motion. 

4   Evolution of Orbital Motion 

Subject to the law of universal gravitation, body k attracts body i with the following force: 

 
3

i k
ik ik

ik

m m
F G r

r
 

 
  (5) 

where G is the gravitational constant; ikr  is radius vector from the body with mass mk to the body with 
mass mi. 

All other k-bodies exert force (5) on the i-body. When we add up all the action forces and divide the 
resulting value by the mass of the i-body, we obtain such body’s acceleration as follows: 
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  (6) 

where ir
  is the radius vector of body im  relative to a center in a nonaccelerating coordinate system 

(in our case, relative to the Solar system’s center of mass). 
Equation (6) is a system of 3n nonlinear differential equations, where n = 11 (nine planets, the Sun 

and the Moon). A high-precision method was developed to solve these equations, and it was later used 
to develop the Galactica system [22], which is free for access [23]. Viability of this method is confirmed 
by the solution of a number of problems in the contemporary celestial and space dynamics [24] - [28]. 

Evolution of the orbit is considered in a fixed coordinate system xyz associated with the fixed plane of 
equator 2 (see Fig. 5). In this study, we examine the evolution of orbit eccentricity e, angle of its 
inclination i against the plane of equator 2, and φ = γ0γ2, ascending node of orbit 2, and angular 
position of perihelion р = 2B, where B is the projection of perihelion on the celestial sphere 1. 

The points in Fig. 6 represent the dynamics of elements the Earth’s orbit, i.e. eccentricity e and 
angles , i and р. Within the period of 7 thousand years (from –3.4 thousand years to 3.6 thousand 
years), eccentricity e and orbit inclination i decrease, while the angle of perihelion р increases. At the 
same time, the angle of ascending node   decreases in the beginning of the period, and then begins to 
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increase. The minimum of   occurs one thousand years before December 30, 1949. Unlike other 
parameters, the angle of perihelion р changes irregularly. Lines 2 and 3 in Fig. 6 describe the average 
changes of these parameters, which are derived by S. Newcomb [29], J. L. Simon et al. [30] from 
observations. The graphs demonstrate that calculation results are confirmed by observations. 

 

Figure 6. Secular changes of the Earth’s orbit 1 and comparison with the approximations 2 and 3 of observation 
data obtained by S. Newcomb [29] and J.L. Simon et al. [30], respectively: e is the eccentricity; i is the inclination of 
orbit plane to equator plane of 2000.0;  is the angular position of ascending node of orbit from axis x in the epoch 
of 2000.0; p is the angular position of perihelion in the plane of orbit from ascending node; all angles are in radians, 
and time T is in centuries from December 30, 1949; the gap between points is 200 years; 1 cyr equals one century. 

 

Figure 7. Evolution of the Earth’s orbit in the past 3 million years. Designations are the same as in Fig. 6. Values 
with subscript m represent mean values of parameters over 50 million years; Тe, Тi, ТΩ represent the main periods of 
oscillations of corresponding parameters in thousands and millions of years, and Тp is the mean period of perihelion 
evolution in 3 million years; the gap between points is 10 thousand years; kyr is one thousand years; Myr is one 
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million years. 

The evolution of the Earth’s orbit parameters over the past three million years is shown in Fig. 7. 
The eccentricity undergoes short-term changes with mean period Te1 = 94.5 thousand years around its 
mean value em = 0.028. Some longer oscillations also occur with the period Te2 = 413 kyr, which result 
in extreme values of eccentricity e = 0.0022 and e = 0.062. Longitude of ascending node φΩ changes 
with a mean period TΩ = 68.7 thousand years around its mean value φΩ  т = 0.068 radian. Oscillations 
with longer duration superimpose on the main period. 

The inclination angle of orbit plane undergoes changes with the same period T= 68.7 thousand years 
around its mean value m = 0.402 radian. Oscillations of angle i occur within the limits of 0.36 to 0.45 
radian and the range of oscillations is 5º. 

Perihelion position angle φр increases in time. Perihelion moves in the direction of the Earth’s 
evolution about the Sun, with one full evolution in 147 thousand years on average in 3 million years. 
Perihelion evolution is irregular. In addition to mean counterclockwise evolution, perihelion also shows 
reverse clockwise motion. 

Analysis of the resulting solutions demonstrated that the axis of the Earth’s orbit S

 (see Fig. 5) 

rotates clockwise, i.e. in counter-direction of the orbital motion of the Earth, with the period TS = -68.7 
thousand years. Let's remind that the axis of the orbit S


 is perpendicular to its plane 5. This rotation 

results in the oscillations of angles i and φΩ shown in Fig. 7. The axis of the orbit S

 rotates around 

the vector M


 (Fig. 5), which is the angular momentum of the entire Solar system. 

 

Figure 8. The evolution of the Earth’s orbit parameters in the past 50 million years: es is the sliding average of 
eccentricity; φp is the angle of perihelion; s is the angle of precession; and Ss are sliding average values of the 
inclination angle of orbital axis S


. Angles р and s are in radians, and Ss is in degrees. 

Differential equations of orbital motion (6) were integrated using the Galactica software for the 
period of 100 million years. It is impossible to represent the resulting calculations with the previous 
parameters at this period, because their oscillations merge into a continuous band. This is why Fig. 8 
shows evolution of the Earth’s orbit parameters over the period of 50 million years in a somewhat 
different format. Sliding average values of eccentricity es averaged over an interval of 2Te2  850 ≈ kyr. 
As we see from the graph, there is a third period of change of eccentricity Te3 = 2.31 Myr. Instead of 
angles of orbit i and φΩ, Fig. 8 shows evolution of angles Ss and S of the orbital axis S


 relative to 

vector M


 (see Fig. 5). The angle of inclination Ss, which is also represented as a sliding average value, 
is the angle between vectors S


 and M


. 
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Maximum deflection of axis S

 from moment M


 is Smax = 2.94º. The periods of its oscillation are 

as follows: T1 = 97.4 kyr, T2 =1.16 Myr and T=2.32 Myr. Oscillations with these periods are shown 
in Fig. 8. The angle of precession S is identical to angle φΩ, but it changes in the plane perpendicular 
to angular momentum M


instead of the plane of equator 2. Similar to the angle of perihelion φр, the 

angle of precession S changes irregularly, with reverse movements. However, these oscillations of φр 
and S cannot be seen in the scale shown in Fig. 8. Due to irregular rotation, average periods of 
perihelion and orbital axis S


 within the period of -50 million years are slightly different: Tp = 150 

thousand years, and TS = -72.9 thousand years, respectively. 
The variation of parameters within the period from -50 million years to -100 million years is identical 

to that shown in Fig. 8 [31]. Similar studies were carried out for all other planets and the Moon 
[28][32][33]. The parameters of their orbits change steadily, like the parameters of the Earth’s orbit. This 
leads to the conclusion that there are no other periods and amplitudes of oscillation of orbit parameters 
except those identified. The obtained results also indicate that the Solar system is stable. It should also 
be noted that the studies of other researchers [34] - [36], who used other methods to solve this problem, 
demonstrated changing oscillations. This is why they concluded that orbits and the Solar system in 
general are unstable [36]. 

Note that our integration results and orbit parameters of all planets for 100 Myr are available at 
http://www.ikz.ru/~smulski/Data/OrbtData/. 

5   Evolution of Rotational Motion of the Earth 

Under the influence of centrifugal forces, rotating Earth elongates in the plane of equator (see Fig. 9). 
Let us look at the impact of body B on two halves of the Earth, i.e. the action of force 1F


 on the near 

half and force 2F


 on the far half. If the Earth was a centrally symmetrical sphere, the resultant of 
forces 1F


 and 2F


 would pass the Earth through its center O. For the oblate Earth, the center of 

masses of the near part of the Earth will tend towards the body B, and the far part will tend away from 
it. This is why force 1F


 will grow, and force 2F


 will shrink, resulting in the clockwise moment of forces 

mO. This process of action on the Earth is described by the theorem of change of angular momentum: 

 
d

( )
d

O
O k

K
m F

t
 




  (7) 

where OK


 is the angular momentum of the Earth relative to the center O in a nonrotating coordinate 
system x1y1z1, and ( )O km F

  is the total of the moments of forces exerted by bodies acting on the 
Earth. 

 
Figure 9. The precession of the Earth’s axis under the influence of body B: 1 and 2 are planes of the Earth’s 
equator and orbit, respectively; 3 is the plane of the orbit of body B acting on the Earth. 

The problem of the Earth’s rotation must be solved (see Fig. 5) in a nonrotating coordinate system 
x1y1z1 associated with the fixed plane of the Earth’s orbit 3. Moving plane of the Earth’s equator 4 is 
determined by the angle of inclination  to the plane 3 and angle of precession  =γ0γ1. The velocity 
of the Earth’s rotation   relative to its moving axis N


 must be considered as well. Based on the 

theorem (7), we obtained [37][38] differential equations of the Earth’s rotational motion: 
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 cosE        (10) 

where Jx, Jy and Jz are the moments of inertia of rotating Earth on the axes of the coordinate system 
associated with the rotating Earth; ( ) /d z x zE J J J   is the dynamic ellipticity of the Earth; E = 

const is the projection of absolute velocity of the Earth’s rotation onto its axis N


 (see Fig. 5) n is the 
number of bodies acting on the Earth, Mi is the mass of such bodies, and x1i, y1i, z1i are their coordinates. 

Equations (8) and (9) result in the angles of position  and  of the moving plane of equator 4 
relative to the plane of fixed orbit 3 (see Fig. 5). Integration of equations (8)-(9) results in the angles of 
inclination  and precession  of moving equator 4 relative to the fixed plane of orbit 3. Integration of 
the equations of orbital motion (6) results in the angles of inclination i and ascending node φΩ of 
moving plane of orbit 5 relative to the fixed plane of equator 2, as well as the angle of perihelion φр. 
These parameters of angular and orbital motion help determine the angles of obliquity  and perihelion 
φpγ of the moving plane of orbit 5 relative to the moving equator 4. Evolution of these angles , φpγ 
and eccentricity e defines the evolution of insolation. 

Let us look at the basic results of solving the Earth rotation problem (8)-(9). Fig. 10 shows the 
change of obliquity  in five different intervals In. The graphs demonstrate main periods Tni and 
amplitude (ai and a4 of oscillation of the inclination angle: half-month Tn2, six-month Tn3 and Tn4 = 
18.6 years. These oscillations are known as nutation oscillations. The angle of precession  has similar 
periods of oscillation, and its amplitudes are 2-3 times greater. 

 
Figure 10. Changes of inclination angles  and  (in radians) of the Earth’s equator plane to its orbit in five time 
intervals In: yr is year;    - 0; 0 is the obliquity in the initial epoch of December 30, 1949; Tn2, Tn3, Tn4 and 
a2, a3, a4 are periods and amplitudes of oscillation of the obliquity ; 1 is based on our results of numerical 
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integration; 2 is the approximation of observation data obtained by S. Newcomb [29] and J. Simon et al. [30]; 3 is 
based on the results of integration by Laskar, Robutel et al. [12]; 4 is based on the results of integration by S.G. 
Sharaf and N.A. Budnikova [10]. 

In the interval In = 0.1 year, we see half-monthly oscillations and daily oscillations; six-month 
oscillations occur in the interval In = 1 year; the interval In = 10 years already shows the trend of 
oscillations with the period of 18.6 years, and oscillations with this period prevail in the interval In = 
100 years. 

In the interval In = 100 years, we see that the calculated 1 obliquity oscillates about the average 2 
obliquity determined by S. Newcomb [29] and J. Simon et al. [30]. The amplitude of oscillations a4=9.2˝ 
for the period Tn4=18.6 years also agrees with the observation results. This amplitude is known in 
astronomy as the constant of nutation. The calculated angle of precession  also fluctuates about the 
averaged angle of precession observed, and the average change of  agrees with observation results. 

As one can see in Fig. 10, the approximated observation results coincide with the results obtained by 
other authors [10][12] in the range of up to 2000 years within interval In = 10 thousand years. After this, 
the obliquity  that we calculated begins to differ from the results of solutions [10][12]. 

Fig. 11 demonstrates that differences grow in time, and further evolution of the calculated obliquity  
varies significantly from the evolution results obtained by other authors who solved a simplified problem 
of the Earth’s rotation. The graphs show that oscillations of angle  in our solutions occur within the 
range of 16.7º to 31º, while previous solutions result in the oscillation range of 22.26º to 24.32º, i.e. the 
range of oscillations is 7 times greater. We calculated the Earth’s insolation with new evolution of angle 
 [17] Its oscillations are also 7 times greater than oscillations of insolation according to previous 
astronomical theories of paleoclimate. 

The second angle in equations (8) - (10), i.e. the angle of precession , varies in a different manner 
than the angle . It decreases continuously, but this decrease occurs with the same oscillations as for 
angle , only the amplitude of oscillations is 2-3 times greater. This change of angle  proves that the 
Earth’s axis N


 (see Fig. 5) rotates clockwise, and the average period of its rotation is PN = -25740 

years. 
Existing studies of these two problems formulate the following vision of motion in the Solar system. 

Perihelion rotates irregularly counterclockwise in the plane of the orbit with a mean period Tp = 147 kyr, 
and deformation of the orbit occurs with oscillations of eccentricity with the periods of 94.5 kyr, 413 kyr 
and 2.31 Myr. Similar changes of orbit with their own periods occur to the Moon and other planets, 
except Pluto. Perihelion of Pluto rotates in a clockwise direction. 

 

Figure 11. The evolution of obliquity  (in radians) of the plane of the Earth’s equator to the plane of its orbit in 
the interval of 200 thousand years: 1 is based on our results of numerical integration; 2 is based on the results of 
integration by Laskar, Robutel et al. [12]; 3 is based on the results of integration by S.G. Sharaf and N.A. 
Budnikova [10]. Maximum and minimum values of angle  are indicated in degrees. 

The axis of the Earth’s orbit S

 (see Fig. 5) rotates clockwise about the vector of moment M


 with 

average period TS = 68.7 kyr over 3 million years. Axis S

 also fluctuates with different periods of 97.4 

kyr, 1.16 Myr and 2.32 Myr. The axis of the Moon’s orbit (not shown in Fig. 5) rotates clockwise about 
the moving axis S


 of the Earth’s orbit. The period of this rotation is 18.6 years. Also, the axis of the 

Moons’ orbit fluctuates with the period of 0.4745 years. 
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As stated above, the Earth’s axis of rotation N


 (see Fig. 5) rotates clockwise with a mean period of 
25740 years. Axis N


 fluctuates with a half-month, six-month and 18.6 year periods. Besides, wide-

amplitude oscillations of axis N


 occur (see Fig. 11) with periods of tens and hundreds of thousand 
years. During these oscillations, the obliquity  of the Earth’s axis varies from 16.7° to 31°, while 
according to the previous theories it varies from 22.26 to 24.32. In other words, the range of the 
Earth’s axis oscillations increased seven-fold. 

6   Evolution of Insolation 

Fig. 10 and Fig. 11 show the change of the obliquity of the Earth’s orbit in the future. In Fig. 12, line 1 
shows the evolution of obliquity  over the past 200 thousand years. In comparison to the calculations 
based on previous theories (line 2), our solutions result in greater oscillation amplitudes, similar to 
calculations of future values. In the initial period of several thousand years, starting with T = 0, the 
obliquity 1 increases, similar to obliquity 2. Then it begins to decrease and reaches its minimum, while 
the obliquity 2 based on previous theories stays at its maximum. The maximum and minimum values of 
oscillations of obliquity 1 and 2 also do not coincide in the remaining time interval. However, the values 
of these extremes appear more essential. 

 
Figure 12. The evolution of obliquity  and summer insolation QS65N and I over 200 thousand years in the past. 
Comparison of new results 1 with results of previous theories 2 illustrated by the example of study by Laskar, 
Robutel et al. [12].  is the inclination angle of the Earth’s equator (in radians) in relation to the plane of its orbit; 
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QS65N is the insolation (GJ/m2) over the summer caloric half-year period on the northern latitude of 65; I is the 
insolation in equivalent latitudes over the summer caloric half-year in the northern latitude of 65. Maximum and 
minimum values of angle  are indicated in degrees. 

In accordance with previous theories, the obliquity changes from 22.21 to 24.43 during this time 
interval. Based on our solutions, the inclination of the Earth’s equator plane in relation to the plane of 
its orbit varies from 14.8 to 32.1. In this case, the range of oscillations of new solutions becomes 7.8 
times higher. Astronomical theories of paleoclimate study insolation over equal caloric half-year periods 
instead of astronomic half-year periods. The beginning and the end of the summer caloric half-year 
period is determined so as to make sure that insolation on any of its day is greater than insolation on 
any day of the winter half-year. Below we will study insolation on the latitude of 65° of the northern 
hemisphere, which is marked as N. We calculate the change of insolation QS

65N over 200 thousand years 
in the past both on the basis of our identified parameters e,  and φpγ (line 1 in Fig. 12), and on the 
basis of the same parameters calculated by Laskar, Robutel et al. [12] (line 2). As one can see in the 
graphs, insolation QS

65N over the summer caloric half-year period in northern latitude of 65 based on 
our solutions occurs with the oscillation amplitude that is 7 times greater than that calculated on the 
basis of previous theories. The time of warm spells and cold spells based on our calculations (1) and 
previous theories (2) do not coincide, as well. In the beginning, starting with T = 0, as we see from 
QS

65N in Fig. 12, summer insolation grows during 4-5 thousand years, and then it begins to decrease, 
reaching its minimum 16 thousand years ago. This minimum is followed by a warm spell, which ends in 
the greatest maximum of insolation 31 thousand years ago. 

The average period of the obliquity oscillations in accordance with previous theories (see 2 in Fig. 12) 
is 41.1 thousand years. The same period is true for the oscillation of insolation QS

65N (line 2). As we see 
from the new equation, the obliquity  (line 1) typically has a 1.5-2 times shorter period of oscillations. 

 

Figure 13. Distribution across the Earth’s latitude φ° of the specific amount of heat in GJ /m2 on high latitudes 
in the hottest epoch of T = 31.28 thousand years in the past: Qs is over the summer caloric half-year period; Qw is 
over the winter caloric half-year period; QT is over the full year: QT value in the graph is halved;  > 0 is the 
northern hemisphere;  < 0 is the southern hemisphere. 

Our solutions demonstrated 7 times greater oscillations of insolation. How essential are they? To 
answer this question, let us look at insolation in equivalent latitudes I, which is calculated as described 
below. If summer insolation at latitude φ in epoch T is identical to insolation at latitude φ0 in the 
current epoch, then insolation at equivalent latitudes is I = φ0. Fig. 12 shows insolation I at equivalent 
latitudes, which we calculated for northern latitude of 65° both on the basis of our data (line 1) and on 
the basis of data obtained by Laskar, Robutel et al. [12] (line 2). Starting with T = 0, insolation I based 
on our data 1 reduces by several degrees from 65° latitude, i.e. it gets warmer at the latitude of 65°. 
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After I reaches its maximum, it starts decreasing towards latitudes of 80° and 90°. For T = -15 
thousand years, the summer insolation at the latitude of 65° is smaller than the current summer 
insolation at the pole, which is why graph I shows a horizontal line. Thus, the horizontal line 
approximately 15 thousand years ago shows that the insolation at the latitude of 65° is smaller than at 
the pole today. This small amount of heat could lead to glaciations of territories at the latitude of 65°. 

Later, towards T = -30 kyr, insolation I at the equivalent latitudes reaches the latitudes of 50°, 40° 
and 30°, i.e. the latitude of 65° gets much more sunlight. Horizontal line in the epoch of T = -30 kyr 
means that 65° latitude gets more heat than the equator today. 

Line 2 shows insolation I at the equivalent latitudes in accordance with the previous theories. As we 
see, the summer insolation at the latitude of 65 over the time period of 30 - 50 thousand years varies 
within the limits of 60 to 70. It is unlikely that the change in the amount of heat at the 65 latitude to 
the values true for the latitudes of 60 and 70 today may lead to any substantial warming or cooling of 
the climate. These insignificant changes of insolation have always been doubtful [7]. 

In the text above, we studied the change of insolation in time at the northern latitude of 65°. Let us 
now look at the change of insolation by latitude at certain points in time. Fig. 4 shows distribution of 
insolation across the globe in the current epoch. Fig. 13 shows the change of summer Qs, winter Qw and 
halved annual QT insolation by latitude φ° in the epoch T = -31.28 thousand years. This time is 
marked by the most intensive summer insolation over 200 thousand years at 65°N (see Fig. 12). Just 
like in the current epoch (see Fig. 4), annual insolation QT is the greatest at the equator, gradually 
decreasing towards the poles. Winter insolation Qw is maximal near the equator, tending to zero at the 
poles. The summer insolation is maximal in the tropics, which were then at higher latitudes than in the 
current epoch (see Fig. 4). Furthermore, the summer insolation at high latitudes is close to maximal and 
is significantly greater than the summer insolation at the equator. 

Annual insolation QT in epoch T = -31.28 thousand years at high latitudes is greater (Fig. 13) than in 
the current epoch (Fig. 4). At the same time, the annual insolation at the equator is less than in the 
current epoch. Still, this reduction is not as significant as at high latitudes. Winter insolation Qw in 
epoch T = -31.28 thousand years at all latitudes is less than in the current epoch (Fig. 4). 

 

Figure 14. Distribution across the Earth’s latitudes φ° of specific amount of heat in GJ/m2 in the coldest epoch of 
T = 46.44 thousand years in the past for high latitudes. Other designations see Fig. 13. 

Fig. 14 shows the change of the same elements of insolation in the coldest epoch of T = -46.44 
thousand years over the 200-thousand-year period. At high latitudes, such as φ° = 65°N, summer 
insolation Qs = 4.72 GJ/m2 has decreased substantially versus Qs = 7.43 GJ/m2 in the epoch T = -31.28 
thousand years and Qs = 5.92 GJ/m2 in the current epoch T = 0. Annual insolation, such as QT = 3.58 
GJ/m2 at the North Pole, dropped from QT = 7.43 GJ/m2 in the epoch T = -31.28 thousand years and 
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from QT = 5.58 GJ/m2 in the current epoch T = 0. Winter insolation Qw in this cold epoch increased 
slightly at all latitudes. 

Thus, summer insolation Qs decreases by a factor of 1.57 at latitude 65° from warm epoch to cold 
epoch. At the pole, annual insolation QT drops even more – by a factor of 2. At the same time, the 
change in the equatorial zone is reverse, but in 4 times smaller extent. At latitude φ = 45°, annual 
insolation QT almost remains unchanged, i.e. the change of summer insolation Qs is equalized by the 
change of winter insolation Qw. 

The insolation oscillations resultant from our calculations may lead to the climate change observed. 
The decrease of summer insolation I 19 - 12 thousand years ago to values smaller than on the pole (line 
1 in Fig. 12) could have caused glaciations. Obviously, this is confirmed by the presence of glacier in the 
north of Eurasia and America at that time. At the same time, the increase of summer insolation I 35 - 
28 thousand years ago to values greater than in the equatorial zone could have shaped a suitable 
environment for the mammoth fauna. Apparently, this fact is confirmed by prevailing fossil dating. 

Still, the resulting extremes of insolation 1 do not coincide with the extremes of insolation in 
accordance with the previous theory of insolation 2 (see Fig. 12). Over almost a century of its existence, 
paleoclimatic events were progressively explained by this theory. This is why they may disagree with the 
new theory now. A fresh review of paleoclimatic data is required along with a study of their dependence 
on the new data of the Earth’s insolation. Prior to such work, however, it seems reasonable that the 
calculated evolution of the Earth’s axis of rotation, which essentially determines insolation, should be 
verified using a different independent method. 

7   Checking Reliability of the Earth Rotation Problem Solution 

As stated above in the Introduction, we solved all the three problems, i.e. insolation, orbital motion and 
rotational motion of the Earth, in a different manner, from deriving the equations to processing and 
analysis of computation results. For example, differential equations (6) for the orbital motion problem 
have never been solved before. Starting with Isaac Newton, this problem was considered within the 
context of the so-called perturbation theory. Researchers studied the motion of one body under the 
influence of the parent body, i.e. the Sun for planets and the Earth for the Moon, and actions of other 
bodies were considered as perturbing factors. In the end, studies embarked on by generations of such 
prominent scientists as Euler, Lagrange, Laplace and many others resulted in equations of perturbed 
motion for six elements of the orbit relative to the fixed ecliptic (see 3 in Fig. 5). All these equations are 
approximated. Later, these equations were also solved using approximated analytical methods by 
expansion in series. Today, these methods have been converted into numerical computation, owing to 
which the number of elements in series reaches as many as several hundred. Still, the approximate 
nature of equations used to solve problems covering hundreds of thousands up to millions of years has 
always cast doubt on the validity of resulting figures. This is why our solutions of the non-simplified 
orbital problem (6) helped us confirm many results obtained on the basis of the previous methods, and 
some of these results, such as the instability of orbits and the Solar system, were disproved. 

The Earth rotation problem (8)-(10), when solved for longer time periods, was significantly simplified 
in the studies of the previous researchers in comparison to the orbital problem. In equations (8)-(9), 
second-order derivatives   and   were omitted, similar to the products of first-order derivatives   
and 2 . This is why such solution of the problem failed to present short-term oscillations that we 
computed and showed in Fig. 10. At the same time, previously computed oscillations of angle  with the 
period of 41 thousand years (see line 2 in Fig. 11 and Fig. 12) could not be otherwise confirmed. 

We were the first team to solve the problem (8)-(10) of the Earth’s rotation over the period of 
hundreds of thousand years. All the appropriate checks were completed within the established solution 
procedure. For instance, the problem was solved gradually, to consider action of one of the bodies [37]. 
Resulting periods of oscillation of the Earth’s axis were validated by basic theoretical conclusions, as 
well as by the results obtained by other researchers [38]. As regards action by all the bodies, the 
problem was solved to cover different time intervals, and the results were confirmed by observation data. 
The integration of equations (8)-(10) over the period of 200 thousand years was performed with different 
initial conditions and different integration steps. This did not change the view of results. Still, the 
resulting amplitudes of oscillation of the Earth’s axis appeared to be 7 times greater than the results 
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based on the previous theories, which required the results to be confirmed. Apparently, a different way 
should be used to solve this problem. For several years, we have been trying to define and implement 
such ways of solving the problem. 

The problem of the Earth rotation is one of the most complicated problems in mechanics. This is 
confirmed by the way equations (8)-(10) look. Their derivation involves a number of conversions from 
one coordinate system into another, as well as a number of simplifications and approximations. This is 
why the results could be verified cardinally if they were obtained without solving the differential 
equations (8)-(9). 

When studying the orbits, we discovered that the evolution of the Moons’ orbit axis is similar to 
evolution of the Earth’s axis of rotation. This result led us to the compound model of the Earth (see Fig. 
15), where a portion of the Earth’s mass is equally distributed among circumferential bodies orbiting 
around the central body on a circular orbit. Orbits of circumferential bodies begin to change under the 
action of the Moon, the Sun and planets. Evolution of orbital axis of one of these bodies reflects 
evolution of the Earth’s axis of rotation. In the first series of studies [25], three models were investigated, 
confirming the possibility to simulate evolution of the Earth’s axis. In these models, the periods of 
precession of model orbit axes equaled 170 years and 2,604 years, while average period of precession of 
the Earth’s axis TprE = 25,740 years. Eleven other models were developed later, until the desired period 
of precession was obtained. 

 

Figure 15. Compound model of the Earth’s rotation. The Earth’s mass is distributed among the central body and 
circumferential bodies: a – circumferential bodies’ orbital radius. 

This simulation of the Earth’s rotation involves several stages of solving the orbital problem (6) using 
the Galactica software. It appears that the model with desired period of precession can be obtained if 
gravitational interaction among the model bodies is reduced or increased. Thus, the Galactica software 
was developed with the modified interaction among certain bodies. 

 
Figure 16. The evolution of angles of obliquity  and precession  of rotation axis of the Earth’s compound model 
No. 13 over 300 years. The points in the figure represent the results of integration of equations (6) using Galactica. 
The distance between the points is 3 years. The lines represent mean changes of angles  and ψ at the rate 300m  = 

- 2.28·10-4 1/cyr = - 0.470 ˝/yr; 300m  = - 2.42·10-2 1/cyr = - 49.9 ˝/yr. 
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The points in Fig. 16 show results of the 13th compound model of the Earth for the period of 300 
years. As one can see, the obliquity  and precession angle  vary with the period of 18.6 years. 
Solutions for shorter time periods resulted in oscillations with half-month and half-year periods, i.e. 
these results coincided with the results of the integration of equations (8)-(10). The amplitudes of these 
oscillations also coincide. Straight lines in Fig. 16 identify mean changes of angles  and . They also 
coincided with the results of direct problem of the Earth rotation, as well as with the observation data. 
Equivalence of results is also obvious if one compare Fig. 16 with the graph of angle  for the interval of 
100 years in Fig. 10. 

This similarity between the results of the model problem and the results of direct problem occurs in 
the period of up to 3 thousand years. Then equations (6) are integrated in the Galactica software, errors 
accumulate for model bodies, and the model dimensions start changing. The orbit’s period of precession 
also changes. For example, by the end of the integration interval of 13.763 thousand years, the period of 
precession reduced from 25740 years to 14840 years, and the model no longer represents the evolution of 
the Earth’s axis. This process occurs due to highly intense dynamic parameters of the model. For 
instance, the orbital radius of circumferential bodies a (see Fig. 15) equals the Earth’s radius, their 
orbital period is 0.142 hours, and the interaction between the model bodies is 9.6 times stronger than 
the gravitational interaction. Thus, the model bodies rotate 170 times faster than the Earth. This is why 
the integration step of problem (6) must be reduced 1000-fold compared to the step used in solving the 
orbital problem. This results in a long time of computation. For example, it took 2.13 months to 
compute the problem over the period of 13.763 thousand years. To make sure the model does not change 
in the interval of 200 thousand years, integration step must be reduced to such values that will require 
unpractical computation time. 

At this stage, compound model covering 3000 years confirmed the results for integration of 
differential equations (8)-(10) of the Earth’s rotation. This proves the assumptions and simplifications 
made during the derivation of equations (8)-(10), their derivation, solution method and conversion of 
integration results into the final view. 

The second independent verification involved the use of a more precise method during the integration 
of equations (8)-(10), specifically the 8th order Runge-Kutta method in the interpretation of Dormand 
and Prince [39]. Previously, the DfEqAl1-.for program used a 4th order Runge-Kutta integration method 
[40]. We were using it for several decades to solve various problems, and the results were always 
satisfactory. When integrating equations of rotational motion (8)-(10) over time intervals of some 200 
thousand years, we faced an unexpected shortfall of this method. Solutions of these equations show daily 
oscillations of derivatives of   and  . Amplitude of these oscillations by the end of the specified 
interval of integration increased by several orders. Despite the tests to check the impact of daily 
amplitudes of   and   on the end results and certain steps to eliminate such impact, the threat of 
their accidental impact still remained. 

A program DfEqADP8-.for was developed, to solve the Earth rotation problem based on the 
Dormand and Prince method and equations (8)-(10) were integrated at different intervals, including 200 
thousand years. All the previous results were confirmed. The amplitudes of daily oscillations of 
derivatives of   and   do not increase and remain on the same level. Thus, equation integration 
method has no effect on the obtained results, and the results are confirmed through application of a 
more precise method. 

The third independent verification implied the use of a different problem solution process. The 
differential equations of rotational motion (8)-(9) include coordinates x1i, y1i, z1i of bodies acting on the 
Earth that are associated with the plane of orbit. When solving the orbital problem (6) using Galactica, 
we calculate coordinates of bodies xi, yi, zi associated with the plane of fixed equator. They were 
converted into coordinates x1i, y1i, z1i. However, when we integrate the problem (8)-(9) over long time 
periods, the resulting data array will require impractical huge amount of memory. This is why we 
developed a mathematical model of the Solar system [21] that delivers, at the right time, coordinates of 
bodies x1i, y1i, z1i on the basis of results of two-body problem, i.e. the parent body and its satellite. In 
this case, parameters of the body’s orbit, including e, i, φΩ, φр, Rp, etc. at each point of time are 
determined on the basis of the data that were calculated prior in Galactica. When solving this task, we 
ran a comprehensive check of the Solar system’s mathematical model. Still, the possibility remained that, 
in case of long time intervals, insignificant differences of the results of the Solar system’s mathematical 

Advances in Astrophysics, Vol. 1, No. 1, May 2016 17

Copyright © 2016 Isaac Scientific Publishing AdAp



model from the values of coordinates computed by Galactica may impact the evolution of rotational 
motion parameters  and . 

Working on the problem of the Earth’s rotation, we repeatedly tried using a different computation 
process. All our attempts were futile until we delivered an idea of effective consolidation of these two 
problems into one. As a result, we developed a new program, glc3rtc2.for, for the integrated solution of 
the orbital problem and the Earth rotation problem. In this program, a single step is used for solving 
the orbital problem (6) using Galactica and then to compute the Earth rotation problem (8)-(10) using 
the Dormand-Prince method. The new program helped us solve these two problems over different time 
periods, including the 200 thousand year interval. All the previous results were confirmed. This 
verification also proved the Solar system’s mathematical model over a long interval. 

Table 1. Comparison of three methods of integrating the equations of rotational motion (8)-(9) over the past 200 
thousand years: RG-4 is the 4th order Runge-Kutta method; DP-8 is the 8th order Runge-Kutta method in 
interpretation of Dormand-Prince; Gal is the coordinates of bodies included in equations (8)-(9), they are computed 
in Galactica, and the equations are solved using DP-8 method. 

Method Ppr, yrs min max 
RG-4 -25774 14.806° 32.073° 
DP-8 -25774 14.806° 32.073° 
Gal -25749 14.802° 32.077° 

 
Graphs in Fig. 12 obtained using the initial method were identical to graphs received by solving the 

problem using the last two methods. Table 1 contains a quantitative comparison of the period of 
precession Ppr and the minimum min and maximum max angles of inclination, accurate to the fifth 
significant figure. The results of the third method, as seen from Table 1, vary in the 4th figure for the 
period of precession Ppr and in the 5th figure for the obliquity . While this is a higher-precision method, 
the last values represent the update to the results obtained using the first two methods. 

Thus, miscellaneous tests and verifications of the initial method of solving the Earth rotation problem, 
as well as independent solutions of this problem using three other methods, confirmed that the Earth’s 
axis of rotation fluctuates with an amplitude 7 times greater than that previously computed by our 
predecessors. 

Let us look at the new solutions of the Earth insolation problem once again. As shown in Fig. 12, 
both summer insolation QS

65N and insolation at equivalent latitudes I based on our calculations (line 1) 
varies significantly from insolation based on the previous theories (line 2) already at the initial time gap 
of 0 to -50 thousand years. According to the new solutions, the ice age could have occurred in the 
interval of 19 to 12 thousand years ago. It was preceded by a very warm period some 35 – 28 thousand 
years ago. These climate changes are confirmed by the research of A. S. Arkhipov (1928-1998) in the 
Upper Pleistocene of the West Siberia [41]. According to Arkhipov, “the Sartan glacial complex consists 
of moraines of the Gydan Stage and two recessive stages, i.e. Nyapan and Norilsk Stages. The apex of 
glaciations occurred 20-18 thousand years ago, the Nyapan stage 15-13 thousand years ago, and the 
Norilsk Stage 11.5-10.4 thousand years ago.” In the same study [41], the warm period mentioned above 
is confirmed by the following statement: “Radiometric age of the Karginsky interglacial (megastage) 
horizon dates back to the period from 55 - 50 to 23 - 22 thousand years ago, and this horizon contains a 
combination of marine and alluvial deposits, as well as staged lokhpodgort glacial, glaciolacustrine and 
terrestrial deposits…” As we see, a cold period 19 - 12 thousand years ago (see insolation I in Fig. 12, 
line 1) and a warm period 35 - 28 thousand years ago are consistent within the accuracy of the 
paleoevents dating. 

Professor A. S. Arkhipov was famous for good reasoning behind his conclusions pertaining to the 
paleoclimate. This is why the results of his studies provided above deserve close attention, even though 
they disagreed with the results of the previous astronomical theory of paleoclimate (see 2 in Fig. 12). 
Except Arkhipov [41], other paleoclimatologists: Grosswald [42], Svendsen et al [43] and others had the 
same understanding of paleoclimate. However, their point of view was sinking in a sea of different 
theories of the majority of paleo-climatologists. As stated above, for almost one hundred years, 
paleoclimate researchers had to refer to the results of the previous astronomical climate theory. They 
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will now need to put substantial effort in reconsidering the entire body of data on paleoclimate, which 
will result in a more accurate definition of the Earth’s history. 

8   Conclusion 

The astronomical theory of ice ages, as originally suggested by its authors L. Agassiz [3], J. Adhemar [4], 
J. Croll [5], R. Hargreaeves [44], M. Milankovitch [6] and other researchers, can explain the occurrence 
of ice ages in the past in rotation with very warm periods. The theory should be studied further and 
expanded. On one hand, the solution of the problem of the Earth’s rotation over long intervals in the 
past must continue. On the other hand, existing results of oscillations of the Earth’s insolation must be 
used to analyze the evidence of paleoclimatic changes to identify if they are associated with oscillations 
of the Earth’s insolation. 

Further studies of the astronomical theory of climate change on Mars [13][35] also appear interesting. 
The space exploration of its surface [45] proves that the planet used to have river beds, water basins and 
other evidence of warmer climate than there is now. It is possible that one of the reasons for climate 
change lies also in the oscillation of Mars rotation axis and parameters of its orbit. 
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