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Abstract. This research work investigates the effect of Poynting-Robertson (P-R) drag on the 
stability of the triangular libration points of the Restricted Three Body Problem (RTBP) when the 
primaries are considered to be oblate spheroid as well as sources of radiation. We established the 
equations of motion, which incorporated the perturbing forces, for the system. Using linear 
approximations, we obtained the triangular libration points in terms of the perturbing parameters 
and found that they were affected by them. Due to the nature of the characteristics equation 
corresponding to the variational equations of motion of the system obtained, we employed Murray’s 
criteria and concluded that the triangular libration points remained unstable. 
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1   Introduction 

The Restricted Three Body Problem (RTBP) is the motion of an infinitesimal body in the field of two 
bodies of finite masses which revolve in circles around their barycenter. In the classical case, [37] showed 
that the RTBP possesses five equilibrium points, three collinear ( 1 2 3, ,L L L ) which are seen to be 
unstable and two triangular 4 5( , )L L  points which are stable for 0 c   , where   is the mass ratio 
and c  is the critical mass value. [33] obtained the complete solution of the problem and established 
the existence and stability of equilibrium points for all values of mass ratio. [28] also analysed the 
stability of the RTBP. They formulated the equation of motion using the Lagrange’s-Hamiltonian 
technique. Here, perturbing factors (radiation, varying masses, atmospheric drag, solar wind drag, 
oblateness, triaxiality, coriolis and centrifugal forces, etc.) were not put into consideration in 
determining the stability of the RTBP. 

One of the immediate generalizations of the RTBP is the photogravitational problem. Several authors 
have generalized the classical case by taking into account the photogravitational effect on the RTBP. 
[24] was the first to formulate the photogravitational RTBP. He studied the linear stability of the five
libration points in the planar case. [15] studied the stability in the Liapunov sense with one of the
primaries radiating. [21] showed the astronomical applications of the stability problem by considering
the influence of radiation pressure from the sun in the planet-satellite-particle system. [14], [10], [12], [16]
and [17] also worked on the similar problem.

These results were further modified by considering the shape of the planetary bodies. [20], [39], [30], 
[13], [1], [4] and [35] studied the stability of the RTBP with either one or both of the primaries being 
oblate spheroid and radiating. 

[29], [6], [31], [38], [32], [2] and many others investigated the case of triaxial primaries with radiating 
effect. 

In addition, the effect of small perturbations in the coriolis and centrifugal forces on the motion 
around the RTBP was considered. [38], [37], [5], [3] found that the stability behaviour of collinear points 
does not change despite the introduction of small perturbation in the coriolis and centrifugal forces, 
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oblateness and radiation pressure parameters while the triangular points are stable for 0 < c  and 

unstable for 1
2c   . [36] studied the combined effect of perturbation, radiation and oblateness on 

the nonlinear stability of RTBP. 
The importance of radiation influence on the planetary and binary systems caught the attention of 

many researchers. [23], was the first to describe the effect of radiation pressure force when he considered 
the effect of absorption and subsequent re-emission of sunlight by small isolated particles in the solar 
system. His work was later modified by [26], when he explained the effect of total radiation force on a 
particle due to radiation source. He used a precise relativistic treatment of the first order in the ratio of 

the velocity of the particle to that of light v
c

 and gave the expression for the net drag force which 

opposes the direction of motion as  

 = p
v vrr rF F
r crr c

 
  

 

  
  (1) 

where 
2

3=
16p

LMF
R AC 

 denotes the measure of radiation pressure and 

r  is the position vector of p  with respect to the sun S  
v  is the corresponding velocity 
c  is the velocity of light 
L  is the luminosity of the radiating body 
M  is the mass of the particle 
  is the density of the particle 
A  is the cross section of the particle. 

The first term in (1) expresses the radiation effect and the last two terms constitute the P-R drag 
effect. 

[7] and [27] studied the existence and stability of equilibrium positions by taking into account the P-
R drag force with only one of the primaries radiating. [7] established that six libration points exist at 
most, five of which lie on the orbit plane while the sixth point falls out of the plane of motion and is 
perpendicular to the orbital plane. They concluded that the P-R effect rendered unstable points that 
were found to be conditionally stable in the classical case. [25] investigated numerically the same 
problem taking both primaries to be radiating. They found that the collinear points deviated from the 
axis while the triangular points were no longer symmetrical. [22] and [19] discussed the effect of solar 
wind drag on the stability of RTBP. [8] studied the out of plane equilibrium points of a passive micro 
size particle and their stability in the field of radiating binary stellar system. [11] perfomed an analysis 
of the circular RTBP under the effect of the dissipative force, P-R drag. He did not consider the second 
component of this drag force i.e. doppler shift of solar radiation and discovered that the stationary 
solutions were unstable for c  . 

[9] generalized the RTBP by considering the bigger primary to be an oblate spheroid and the smaller 
one radiating with P-R effect. On the other hand [34] investigated the effect of this drag when the 
smaller primary is an oblate spheroid and the bigger one a source of radiation with P-R drag effect. 
They found that due to the presence of P-R drag the triangular points were unstable. 

Due to their remarkable and dynamical results on the effects of P-R drag forces on the motion around 
the orbit of the satellite (natural/artificial) and its significance in dealing with problems in astrophysics, 
we hereby generalize their work further and propose a new model to study the effect of P-R drag on the 
stability of the triangular libration points in the RTBP when the primaries are oblate spheroid as well 
as sources of radiation. 

The paper is organized as follows: section 2 presents the equations of motion of our model, section 3 
deals with the location of libration points. In section 4, we examine the stability character of the 
problem using Murray’s idea and section 5 entails the discussion and conclusion. 
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2   Equations of Motion 

With reference to an inertia or fixed coordinates XYZ, let 1m  and 2m  be the masses of the primaries 

1S , 2S  respectively and M be the mass of the infinitesimal mass P . We introduce a rotating 
coordinate system Oxyz with the origin O at the barycenter of the primaries in which the axes rotate 
relative to the inertia space with an angular velocity ˆ= nk . 

 

Figure 1. Coordinates of the primaries w.r.t. the inertia frame of reference OXY 
 
We adopt the notation and terminology of [37] in which the distance between the primaries is taken 

to be equal to one; the sum of the masses of the primaries is also taken as 1 so that if 2 =m  , then 

1 = 1m   where   is the mass ratio parameter and 2

1 2

=
m

m m



. The unit of time is also chosen so 

as to make the gravitational constant G, to be equal to one. The oblateness coefficient is 
2 2
1 1

1 2
=

5
ae ap

A
R


, 
2 2
2 2

2 2
=  

5
ae ap

A
R


[20], where 0 1iA  , iae , iap , 1,2i   are the equatorial and polar 

radii respectively and R  is the distance between the primaries. The velocity of light c  is given as 
= dc c  and the mass reduction factor expressed in terms of particle radiusa , density   and its solar 

radiating pressure efficiency factor   (in chs unit) are taken to be constants so that the mass reduction 

factor
55.6 10   = 1 , q

a





  and 0 (1 ) 1iq   , 1,2i   for the bigger and smaller primary 

respectively. 
In the dimensionless synodic coordinate system the equations of motion of the infinitesimal mass in 

the x y  orbital plane (z=0) is  

 
2 =
2 =

x

y

x ny
y nx
 

 

 
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  (2) 

where  
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The mean motion n  is given as  

 2 1 23 3
= 1

2 2
A A

n     (5) 

3   Location of the Triangular Libration Points 

The libration points are the solution of the equations (2) and (3), when the velocity and acceleration are 
equal to zero ( = = = = 0x y x y    ), that is, 

 

2 1 2 1
3 3 5

1 2 1

2 1 2
5 2 2
2 1 2

(1 )( ) ( 1) 3(1 )( )
=

2
3 ( 1)

       = 0
2

x

x q x q x A
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r r r
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r r r
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 
  

  (6) 

 2 1 2 1 2 1 2
3 3 5 5 2 2

1 2 1 2 1 2

(1 ) 3(1 ) 3 ( ) ( 1)
= = 0

2 2y

q y q y yA yA nW x nW x
n y

r r r r r r
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
    

         (7) 

The triangular libration points are the solution of equations (6) and (7) when 0y  . 
In the absence of oblateness 1 2( , = 0)A A  and the P-R drag 1 2, = 0W W  the equations above reduce 

to the photogravitational RTBP so that 
 1/3 1/3

1 1 2 2=   and  =r q r q  

Let 1 1   and 2 1   be small perturbation in 1r  and 2r  respectively due to the presence of 
oblateness and P-R drag. Then  
 1/3 1/3

1 1 1 2 2 2=   and  =r q r q     (8) 

Furthermore, we let 1 1= (1 ),q   2 2= (1 )q  , 1 2( , 1)    so that by putting these in equation 
(4) and solving simultaneously for x and y, considering only liner terms of small quantities, we get  

 1 2
1 2

1=
2 3 3

x
 

         (9) 

or 

 1 2= 1o
o

x x
x

    
  

  (10) 

where 

 1 21=
2 3 3ox

 
     (11) 

and  

 1 2
2 2

= 1
2 2o

o o

y y
y y
  

   
 

  (12) 

where 

 1 22 23= 1
2 9 9oy

  
    

 
  (13) 
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Now, multiplying eqn (6) by y , (7) by ( )x   and then (7) again by ( 1)x   , we have the 
following equations  

 

2 1 2 1
3 3 5

1 2 1
2 2

2 1 2
5 2 2
2 1 2

(1 ) ( ) ( 1) 3(1 )( )
2

3 ( 1)
      = 0

2

q x y q x y x Ay
n xy

r r r
x A y nW y nW y

r r r

     

 

     
  

 
  

  (14) 

 

2 1 2 1
3 3 5

1 2 1
2

2 1 2
5 2 2
2 1 2

(1 ) ( ) ( ) 3(1 )( )
( )

2
3 ( ) ( ) ( )( 1)

             = 0
2

q x y q x y x Ay
n x y

r r r
x A y nW x nW x x

r r r

     


    

    
   

    
  

  (15) 

 

2 1 2 1
3 3 5

1 2 1
2

2 1 2
5 2 2
2 1 2

(1 ) ( 1) ( 1) 3(1 )( 1)
( 1)

2
3 ( 1) ( )( 1) ( 1)

                  = 0
2

q x y q x y x Ay
n x y

r r r
x A y nW x x nW x

r r r

     


    

       
    

      
  

  (16) 

Subtracting (15) and (16) from (14) simultaneously, we obtain 
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since 
2 2

1 2 1
=

2
r r

x 
 

  and 
2 2

1 2 1
1 =

2
r r

x 
 
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Using equations (5), (8), (10) and (12) in (17) and simplifying (rejecting second and higher order 
term of small quantities, that is 1 , 2 , 1 , 2 , 1A , 2A , 1W , 1   1W  ), we get  

 

2 1 2 1 1 2
1 2=   and  =
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or with equation (9)  
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Substituting these values of 1  and 2  in (10) and (12), then simplifying, we obtain 

 1 2 1 2 1 2(2 ) (1 )1=
2 3 3 2 2 3 (1 ) 3 3 (1 ) 3

A A nW nW
x

   

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 
  (19) 

and 

 1 2 1 2 1 22 2 (2 3 ) (1 3 )3= 1
2 9 9 3 3 9 (1 ) 9 (1 )

A A nW nW
y

   
   

   
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  (20) 

Equation (19) and (20) are the coordinates of the triangular point of the modified system under 
investigation. 
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4   Stability of Libration Points 

To determine the stability of the libration points in the xy -plane, we let 0 0( , )x y  be the coordinate of 
the libration point and consider a small displacement , 1    such that 0x x   , 0y y    is a 
point in the neighbourhood of the libration point. Then, we obtain the variational equations of the 
system (3) as 

 
2 = (2)

2 = (2)

o o o o o
x xx xy xx xy
o o o o o
y yx yy yx yy

n O

n O

     

     
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          
 

 

  
  

  (21) 

where (2)O  represents second and higher order terms in   and  . The superscript ( )o  indicates that 
the second order partial derivatives are evaluated at the libration points. 

If we let = tAe  and = tBe  be the trial solutions to the equations (21) then we get the 
characteristic equation corresponding to the variational equation of motion as 
 4 3 2 = 0a b c d         (22) 
where = ( )o o

xx yya      ,  
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= o o o o

xx yy yx xyd       
Differentiating (3) and evaluating all the second partial derivatives at libration points and considering 

only linear terms of small quantities, we get  

 
1 1

2 2
1 2

2

3 1 3 3 27 24= 1
4 2 2 2 8 8

(8 13 ) (4 11 )3 24         
2 3 4 (1 ) 3 4 (1 ) 3

o
xx A

W W
A

  

   

   

     
           

     
    

    
  

  (23) 

 
1 2 1 2

2 2
1 2

3 2 2 1 1= 3 6 (1 ) (2 ) (19 26 ) (7 26 )
4 3 3 2 2

(8 31 27 ) (4 23 27 )
        =

12 (1 ) 12 (1 )

o
xy

o
yx

A A

W W

      

   
   

 
          

 
   

  
 

  (24) 

 
2 2

1 2
1 2 1 2

(8 17 5 ) (4 7 5 )9 1 1 33 33= (1 3 ) (2 3 )
4 2 2 8 8 4 (1 ) 3 4 (1 ) 3

o
yy

W W
A A

   
   

   

   
        

 
  (25) 

 

1 2

1 2

1 2

5 5=
4 4

3 3= =
4 4

7 7=
4 4

o
xx

o o
xy yx

o
yy

W W

W W

W W


  


   

  




 



  (26) 

Substituting these values from (23) - (26) in (22) considering only linear terms of small quantities, we 
obtain  
 1 2= 3 3a W W   (27) 

 1 2
1 0 1 1 2

3 3= ,    1, 3 3
2 2 3 3

o

W W
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 
   

  (30) 

The four roots of the characteristic equation of the classical RTBP is  
 =      ( = 1,2,3,4)n zi n    (31) 

where  

 
1

2 21= 1 1 27 (1 )     [37]
2

z  
         

  (32) 

We assume, due to oblateness and P-R drag, a solution for the equation (31) as  
 1 2= (1 )n i       (33) 

where 1 , 2  are small real quantities. 
Using (31) and neglecting second and higher order terms of small quantities we have 

2 1= [ (1 ) ]i z                2 2
1 2= [ (1 2 ) 2 ]i z      

 3 3
2 1= 3 (1 3 )i z            4 4

1 2= [(1 4 ) 4 ]i z     

Putting these in (22) and considering only first order terms of small quantities and since 1= ob b b , 

1,a b , contain only components of small quantities, we get 

 4 2
1 1[(1 4 ) (1 2 ) ] = 0oz b z d      

4 3 2
2 24 2 = 0oz az b z cz     

from which we have 

 
4 2

1 4 2

( )
=

4 2
o

o

z b z d
z z b


 




  (34) 

and  

 
3

2 4 2
=

4 2 o

az cz

z b z
 




 (35) 

where the values of , , ,oa b c d  and z  are given in (27)-(29) and (31) respectively.  
The motion around the triangular libration points is asymptotically stable only if 2 0   and  when 

the real parts, ( )Re   of the root, are all negative. 

Now, 
2

2 2
( ) = =

2(2 )o

c az
Re z

z b
  




 from (31), considering only the first order term 2 =z  

1 271 1 (1 )
2 2

 
       
   

 and so taking positive sign and ( ) < 0Re   then,  

1
27 (1 ) 27 (1 )( ) = 1 2 < 0
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This implies 27 27 271 (1 ) 1 (1 ) (1 ) < 0
2 4 2
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   
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and gives 

 
27 (1 )(2 ) <
4
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On the other hand, taking negative sign 
1

27 27
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a
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which implies 27 27(1 ) 1 (1 ) < 0
4 2

ac    
   

       
   

, 

we have 

 
270 < (1 )(2 )
4

c c a      (37) 

From eqn (36) and (37), we have  

 
270 < (1 )(2 ) <
4

c c a a      

as 0   
 0 < <         [22]c a   (38) 

This inequality is the necessary condition for stability of triangular libration points at 4L  and 5L  
according to [22]. But according to equation (29) as 0   

 1 2 1 2
21= 3 < 0    ( , 0)
4

c W W W W
 

   
 

  

This contradicts the condition for stability in (38). Hence, we conclude that due to oblateness, 
radiation pressure, with PR-drag effect from both primaries the motion remains unstable in the linear 
sense. 

5   Discussion and Conclusion 

In this research, we study the effects of Poynting-Robertson drag on the location and stability of 
restricted three-body problem when the primaries are oblate spheroid. A system of second order non 
linear differential equations of motion of the system was obtained and using linear approximations we 
located the triangular libration points of the problem as equations (19) and (20). 

We also validated the location for other generalizations by suppressing certain parameters. That is by 
setting any of 1 2 1 2 1 2, , , , ,A A W W   to be equal to zero for the absence of radiation pressure force, 
oblateness and P-R drag effect respectively. The results agree with those of other researchers. The roots 
of the characteristics equation (22) corresponding to the variational equation (21) are given by equations 
(33), (34) and (35). They are found to be affected by the perturbing parameters. Due to the nature of 
the characteristics equation (22) we employed Murray’s criteria [22] to determine the nature of its roots. 
We found that the triangular libration points are unstable due to the presence of radiation pressure 
forces, oblateness and Poynting-Robertson drag.  

In particular, when 1 2 1 2= = 0, = = 0A A  and 1 2= = 0,W W then = 0, = = 1oa b b and 

27= (1 )
4

d   , the roots of (31) gives 2 1 1 27 (1 )
=  

2
 


   

[37] and for stable motion 

1 > 27 (1 )   which implies < 0.0385.  This gives the classical case. 

When 1 2= 0, = 0,A A  1 2= = 0W W  then = 0, = 1, = 0a b c  and   1 2
3 91
2 2

d    
 

    
 

 [27]. 

This is the case of photo gravitational RTBP. 

Also when 1 1 2= 0, = = 0A A  and 2 = 0W  then 1
2 1

9= 3 , = 1 , = 3
43

W
a W b c W
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 
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1
1
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   . This agrees with the result of [27]. 

When 1 0A  , 2 = 0 , 1 = 0A , 2 0A  , 1 0W  and 2 = 0W . Then 1= 3a W , 1
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When 1 2 1 2 1= 0, 0, 0, = 0, = 0A A W     and 2 0W  , then, 2= 3a W , 2
1

3= 1 3
2 3

W
b A

 
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 

, 

2
21 9=
4 4

c W 
  
 

 and 2
2 1

(27 81 )27 3 117= (1 ) (1 ) (1 )
4 2 4 4 3

W
d A


      


      [34]. 

The roots of the characteristics equation (22) corresponding to the variational equation (30) is given 
by the equations (33), (34) and (35) where values of , ,a b c  are given in (27) to (30). These equations all 
depend on the parameters of the perturbing factors. 

The nature of the value of c  as compared to the condition necessary for stability by Murray [22] 
shows that due to radiation pressure, forces, oblateness and Poynting-Robertson drag from primaries the 
motion of the infinitesimal body remains unstable.  

Successive research results of generalizations involving radiation pressure forces, oblateness of 
primaries and Poynting-Robertson drag have shown that they are destabilizing forces. Astrophysical 
evidences have also revealed that these parameters are natural activities in our solar, extrasolar and 
stellar systems. A satellite (natural or artificial) is expected to navigate in the neighbourhood of the 
planets in our solar system in their stable orbits under the influence of these forces. Hence, our result 
provides information for a space/astronomical engineers to take into consideration, the destabilizing 
effects of radiation pressure forces, oblateness of the primaries and Poynting-Robertson drag when 
designing a spacecraft that will navigate in the vicinity of the planets. 
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