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Abstract The relationships between the redshifts, the luminosity distance and the true distances at
the times of light emission and reception, are formally calculated in Euclidean spaces whose expansion
is describable using simple functions: proportional to cosmic time, power law or exponential, and
for the different assumptions about the origin of the redshift: kinematic, relativistic and wave
stretching effects. None of these combinations gives the same results in terms of redshift, of horizon,
of distances and of deviation from the Hubble law. This systematic analysis provides the limit cases
of expansion scenarios.
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1 Introduction

Different scenarios of expansion have been proposed, based on the predicted physico-chemical maturation
stages of the universe, and then tested observationally. But each scenario implies specific approaches
to distances. The distance between sources and receivers at the time of light emission or reception are
not the distance travelled by light because space expands ahead of and behind the light front. Moreover,
these distances cannot be deduced from redshifts without assuming a preconceived distance-redshift
diagram under a given mode of expansion. The present paper that is not intended to describe cosmological
reality, is aimed at summarizing the dependence of the distances on the mode of expansion, using simple
expansion functions. The distance-redshift diagram initiated by Hubble [1] is a central piece of information
in cosmology, which can be envisioned as the black box of the universe in which are recorded the past
modes of expansion. However, to allow using this diagram for deducing expansion rates, the measurements
of the redshifts and distances should not be correlated. Indeed, deducing distances from redshifts would
obviously introduce circular distortions in the reasoning. The distance used in the present study is the
distance travelled by light, written DL. Among the different measurements of distances in astronomy,
summarized in [2], DL is in theory equivalent to the luminosity distance, based on the decrease of apparent
luminosity with distance of objects with known global luminosity. Because of space expansion, DL is not
the distance of the celestial body when the light was emitted since it was shorter, nor the actual distance
because the space separating us from the star continued to expand during the travel of light. Hence,
mathematical twists are necessary to connect distances and redshifts. These relationships are directly
established here for toy universes Euclidean at large scale and steadily expanding according to analytic
functions. Let us begin with the basics: the origin of the redshift.

2 The Main Hypotheses on the Origin of the Redshift

2.1 Redshift without Expansion

Assumptions can be made to explain a generalized redshift without expansion. Relativity would be
sufficient to cause distant objects to appear redshifted as a consequence of an apparent slowing of time,
but this attractive possibility will not be examined here. Instead, space will be approximated as globally
Euclidean, even if it can be locally shaped by gravity. Another hypothesis, called "tired light", assumes
that the longer is its flight, the more the light loses its energy by interaction with particles encountered
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along its path (which can originate from the quantum vacuum). As the tired light theory is not based
on simple optical rules, it will not be treated here, but this theory curiously uses the same law as the
simple exponential expansion [3], which can of course give it a misleading success. Hence, this case will be
indirectly treated when studying exponential expansion.

2.2 The Redshift Caused by Expansion

The prevailing view is that the cosmological redshift is related to space expansion, but divergences exist
about this relation. Two interpretations of the redshift, Doppler effect and wave stretching, have been
proposed.

The redshift interpreted as a kinetic Doppler effect. The Hubble Redshift is frequently, perhaps
erroneously, interpreted as a Doppler effect conceived conventionally (with a single light emission point
but not as the addition of infinitesimal Dopper shifts along the light path postulated in the theory of
[2,4]). An observer sees a red shift if the light source moved away from him when emitting the observed
light. In case of expansion, the distant stars move away from each other, but passively. As mutually
receding objects can belong to the same inertial reference frame, the question is whether a passive speed
can generate a Doppler effect. With uniform motion, the redshift corresponding to the classical Doppler
formula is z = Vrec/c where Vrec is the recession velocity and the relativistic redshift based on the Doppler
formula of Einstein [5] is

zr =
√
c+ Vrec
c− Vrec

− 1 (1)

This equation is little used in astrophysics in which recessional velocities can be superluminal (Vrec > c)
[6]. In addition, this formula has been built in special relativity, whereas recession velocities Vrec are
generally supposed not uniform.

The redshift interpreted as a stretching of waves during their travel. Before the publication of
Hubble [1], Lemaître had shown that wavelengths should follow expansion [7]. For an interval of universe

ds2 = dt2 − a(t)2dσ2 (2)
where dσ is the element length of a space of radius equal to 1, the equation of a light beam is

σ2 − σ1 =
∫ t2

t1

dt

a
(3)

where σ1 and σ2 are the coordinates of a source and an observer. A beam emitted later at t1 + δt1 and
arriving at t2 + δt2 undergoes a shift such that

δt2
a2
− δt1
a1

= 0 (4)

giving
z = δt2

δt1
− 1 = a2

a1
− 1 (5)

where δt1 and δt2 can be considered as the periods at emission and reception respectively [7]. In his
article, Lemaître called this effect a Doppler effect. This term is acceptable if broadly defining the Doppler
effect as a wave distortion, but this is not the classical Doppler effect related to the speed of the source.

It will be shown here that these interpretations of the redshift give different results regardless of the
type of expansion. In the wave stretching effect of Lemaître, the ratio between the reception and emission
wavelengths simply follows the increase of the distance between the source and the receiver which took
place during the light flight, between the time point of emission (source and receiver spaced by DE) and
that of reception (source and receiver spaced by DR):

λrec

λ
= DR

DE
(6a)
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The corresponding redshift zs is the relative distance increase

zs = DR −DE

DE
or DR = DE(1 + zs) (6b)

3 Doppler Effects in Uniform Motion

The simple case of uniform motion is sufficient to perceive the symmetric nature of relative motion and
the absence of a static medium. Imagine that a source and a receiver can move relative to one another
and in addition, can move relative to an hypothetical static medium supporting light propagation at
speed c. The source and the receiver recede form each other at speed v. At time tE, when spaced from the
receiver by DE, the source emits a light beam propagating towards the receiver.

Figure 1. A light pulse is emitted by a source (S) when spaced from a receiver (R) by DE. Just like a ball
thrown between two players, light travels through a static medium relatively to which either S (middle line) or R
(bottom line), is considered immobile.

3.1 In an Immobile Medium

Different results are expected depending on whether this is the source or the receiver which moves
relatively to the background medium (Fig.1).

The source is considered immobile relative to the background medium. In this case, light is
expected to reach the receiver after crossing a distance DR (middle line of Fig.1). The duration of the
light travel is

tR − tE = DR/c (7a)
At tR, the new spacing between the source and the receiver has become

DR = DE + v(tR − tE) (7b)

Replacing the duration in Eq.(7b) by the value given by Eq.(7a), yields a distance ratio corresponding to
a classical Doppler effect

DR

DE
= 1

1− v

c

(7c)

In case of collinear approach, the same reasoning gives
DR

DE
= 1

1 + v

c

(7d)
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The receiver is considered immobile relative to the background medium. Light reaches the
receiver at time tR after crossing a distance DE (bottom scheme of Fig.1). Hence, the duration of the light
travel is

tR − tE = DE/c (8a)

Replacing the duration in Eq.(7b) by its value given by Eq.(8a), yields

DR

DE
= 1 + v

c
(8b)

Distance increases in the same ratio as that of the classical Doppler effect. In case of collinear approach,
the same reasoning gives

DR

DE
= 1− v

c
(8c)

These Doppler effects are suitable for the sound that is carried by physical supports, but not for light
travelling in vaccuum. Since it is impossible to assign the relative movement to either the source or the
observer, it seems natural to take the geometric mean of the two extreme situations of Fig.1 (Eqs (7c)/(8b)
and Eqs (7d)/(8c)). Interestingly, this gives exactly the relativistic Doppler effect. For the recession:〈

DR

DE

〉
=
√
c+ v

c− v
(9a)

and for the approach 〈
DR

DE

〉
=
√
c− v
c+ v

(9b)

3.2 Without Background Medium

In the special relativity theory, uniform motion cannot be attributed specifically to one of the relatively
moving frames. The total distance crossed by light is not DR nor DE, but

DL = c(tR − tE) = c

v
(DR −DE) (10)

The precise relationships between DR, DE and DL will be calculated later, but these simple considerations
already suggest that a relative speed of light should be defined, not bound to the source or the receiver.

3.3 Definition of a Relative Speed of Light

For light following geodesics (s = 0), the metric of Friedmann-Robertson is very simple. By rewriting the
interval of Eq.(2) in Cartesian coordinates, this metric reads

ds2 = (cdt)2 − a(t)2(dx2 + dy2 + dz2) (11)

where a(t) is the spatial expansion factor depending on time only [8]. For a light beam oriented along the
x axis, this line element reduces to

dx

dt
= c

a(t) . (12)

The ratio would be equivalent to a relative speed if adding a unit of distance to a(t). Accordingly, a time−1

equation is obtained with the Friedmann-Lemaître-Robertson-Walker approach giving dχ/dt = c/a(t)
where χ is an angle (without dimension) and a(t) is a distance, more appropriately written R(t) in this
case.
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4 Tools and Observables

4.1 Nomenclature

Contrary to usual nomenclature, in cosmology the suffix 0 is not used for the initial condition but for the
final condition (present). The following symbols are therefore used to avoid misunderstanding:

– tE is the date of light emission (initial, generally written t0 in other scientific contexts). This date can
not be measured directly.

– tR is the date of reception of the light (final). This is the present age of the universe, written t0 by
cosmologists. Of course if running time backward, an acceleration becomes a deceleration and vice
versa, which may induce some misunderstandings.

– DE is the initial distance between the star and the telescope (which did not exist yet!) at tE. DE is not
known a priori.

– DR is the distance between the source and the telescope when light enters it.
– DL is the distance travelled by light between its emission and its reception. Hence, DL/c = tR − tE. DL

is smaller than DR because the fraction of space already crossed by light continued to stretch until
reception. The measurement of DL is simple, at least in its principle. In a flat 3D space, a source
emitted light in all the directions so that the light front progresses as the surface of a sphere 4πD2

where D = ct. As a consequence, the flux of light I detected by an observer at the surface of this
sphere corresponds to the 1/4πD2th of the total light Itot emitted by the celestial body when it was
as it appears in the telescope after redshift correction, giving

D =
√
Itot/4πI

This distance is not based on z, even if z is used in practice to assist the measurement, for correcting
energy and selecting the range of observable wavelengths to consider. Type Ia supernovae are
particularly appropriate for measuring distances by this way given their standard brightness, which
greatly helped refining the distance-redshift diagram in the last decades [9].

4.2 Quantities Measurable in Our Telescopes

In the theory of Lemaître, the redshift is given by the ratio DR/DE (Eq.(6)), but none of these distances
is directly measurable, contrary to the distance crossed by light (DL). Note that the same light received
at tR is used to measure both the redshift and the distance.

4.3 Additional Recipes

tR, the present age of the universe, is not known but can be replaced by a constant because it is common
to all our measurements. Finally, a very useful tool is the fractional distance x(t) crossed by the front of
light between the transmitter and the receiver, defined by the function

x(t) =
∫ t

τ=tE

c

D(τ)dτ

where D is the source-receptor distance. Then, the date of arrival tR is simply obtained by solving

x(tR) = 1

5 Influence of Expansion on Signal Connection

The relative speeds of light and expansion could limit or even forbid the connection between sources and
receivers. Let us examine precisely different cases of expansion.
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5.1 Uniform Expansion

Authors suggested a simple mode of universe expansion called a ∝ t, which follows the cosmic time
[10,11,12]. When a(t) = ct, ȧ = c and H = 1/t, expansion follows the age of the universe according to

D(t)
DE

= t

tE
(13)

In fact, with a linear cosmic time, this expansion simply corresponds to the uniform expansion at
constant speed v. Indeed, Eq.(13) can be re-written

D(t)
DE

= 1 + t− tE
tE

(14a)

or
D(t) = DE + DE

tE
(t− tE) (14b)

that is
D(t) = DE + v(t− tE) (14c)

Uniform expansion means at constant intervals, but not necessarily slow expansion, as the speed
can be unlimited. With uniform expansion and given sufficient time, a walker will inevitably cross a
road even if stretching at gigantic superluminal speed, whatever his walking speed (eg walk at c = 4
km/h while the road stretches at v = 1,000 km/h). This result is so counterintuitive that it has been
popularized as a mathematical game [13]. The relative speed (time−1) can be written in two manners
using the correspondence D(t) = DE(t/tE) = DE + vt,

dx(t)
dt

= ctE
DEt

= c

DE + vt
(15)

whose integration gives a unitless relative position x, starting from x(tE) = 0, of

x(t) = ctE
DE

ln t

tE
= c

v
ln
(

1 + vt

DE

)
(16)

These functions without ceiling indicate that the walker necessarily reaches x(t) = 1, even with a very
high stretching rate v. If the walker is a photon, signals cannot be disconnected in the universe, regardless
of the relative speeds of walking and of expansion. The journey can however be very long as its duration
follows

∆t = DE

v
(ev/c − 1) (17)

Whatever the relative values of v and c are, there is no disconnection between the different parts of
this universe. To try to interrupt this connection, one must change the mode of stretching. Let us examine
first a mode of expansion widely used in astrophysics, the geometric progression called "power law".

5.2 Power law expansion

This mode of expansion, predicted by calculations based on the theoretical constituents of the universe,
satisfies

D(t) = DE

(
t

tE

)u
(18)

where u can take different values depending on the maturation stage of the universe described in
astrophysics courses: 1/2 for the radiation-dominated era, 2/3 for the matter-dominated era, 1/3 for the
stiff fluid, u = 2 for a minimal condition of inflation satisfying ä/a > 0, etc. The relative position of the
walker (photon) is obtained by integration between tE and t
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x(t) =
∫ t

τ=tE

c

DE

(
τ

tE

)−u
dτ

= c

(1− u)
tE
DE

[(
t

tE

)1−u
− 1
] (19)

Things get interesting:

– (i) For u < 1, x(t) increases continuously with t and therefore can exceed 1 without problem. As for
the previous modes of expansion, the universe is revealed in its entirety though at different ages.

– (ii) For u > 1, information cannot cross a virtual limit called horizon

x(t∞) = c tE
DE(u− 1) (20)

The success of the connection depends on the initial conditions of light emission: the time of departure
(tE) and the distance to be covered as it is at this time (DE). Now let us try another accelerated mode of
expansion in which time is not raised to a power, but is itself an exponent.

5.3 Exponential expansion

With an exponential expansion of rate H, the initial distance stretches according to D(t) = DE eH∆t and
the relative speed of light is

dx(t)
dt

= c

DE
e−H(t−tE) (21)

whose integration between tE and t, gives his relative position on the source-receiver spacing unit.

x(t) = c

HDE

(
1− e−H∆t) (22)

This position tends asymptotically to a maximum c/HDE, which means that for given values of H
and c, the success of the connection depends on DE. To reach the target, c/HDE must exceed 1, so DE
must be lower than c/H. The critical distance c/H is a disconnection point in the expanding universe,
that is unreachable because the time of travel

∆t = 1
H

ln

 1

1− HDE

c

 (23)

would become infinite, and at t infinite, the relative speed dx(t)/dt is zero. This distance is universal in a
homogeneously expanding universe and valid from any starting point.

Consequence of the Hubble law Vrec = HD. The proportionality between the recession velocity
and the distance can be written dx/dt = Hx, where H is the slope of a straight line. As the slope of a
straight line is a constant, the unique solution of the Hubble law is x(t) = x(0)eHt. We see that this
expansion is not only a model (of de Sitter), but also just the only possible mathematical solution of the
Hubble law as long as H is constant. But it is recommended to write Vrec = H0D to clearly indicate that
H(t) may have been different in the past, so the interesting questions are: how much of the universe we
can see and how far we have to look for seeing a H different from H0.
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Specificities of the exponential mode of expansion.

– (i) It is an infinite mode of expansion, because a(t) = a0eHt (Hubble law) has no root, so a universe
steadily submitted to exponential expansion has no big bang.

– (ii) This mode of spatial expansion is that of the flat version of the universe of de Sitter [14] (for
k = 0), towards which converge at long times the positively curved version (x(t) = x(0) coshHt for
k = 1), and the negatively curved version (x(t) = x(0) sinhHt for k = −1). After a period of success,
the model of exponential expansion of de Sitter was disqualified because it has been shown to not
satisfy theoretical predictions based on assumptions of pressure and density of the universe. It is
however supposed to be the present mode of expansion driven by vaccum energy since we entered
the "dark energy-dominated era" in which H0 is a constant H0 =

√
Λ/3, where Λ is the cosmological

constant.

6 Redshift-Distance Relationships Expected for the Different Modes of
Expansion

Let us examine successively the different modes of expansion and for each one, the two hypothetical
causes of redshift : Doppler effect and wave stretching.

6.1 Power-law Expansion

Classical Doppler effect.

DE = DR

(
tE
tR

)u
(24a)

The speed of the source at emission can be deduced from the distance at reception

zd = 1
c

dDE

dtE
(24b)

that is, taking DR and tR as constants

zd = uDR

c

tu−1
E

tuR
= uDE

ctE
(24c)

replacing tE by tR −DL/c and DR or DE by their values deduced from x(tR) = 1,

zd = u

1− u

[(
1− DL

ctR

)u−1
− 1
]

(24d)

where tR can be considered as a constant at our time scale.

Wave stretching. The result is straightforward

DR

DE
=
(
tR
tE

)u
=
(

1− DL

ctR

)−u
(25a)

and

zs =
(

1− DL

ctR

)−u
− 1 (25b)

6.2 The Particular Case u = 1 (a ∝ t)

As mentioned previously, this case merely corresponds to uniform expansion.
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Doppler effect.

– Classical Doppler effect

The recession velocity for this mode of expansion is simply D/t, where D and t vary proportionally,

DE

tE
= DR

tR
= v

and
zd = v

c
(26)

which supports superluminal velocities.

– Relativistic Doppler effect

Using the special relativistic Doppler equation, the redshift is

zr =
√
c+ v

c− v
− 1 (27)

Wave stretching. By definition for this mode of expansion,

λrec

λ
= DR

DE
= tR
tE

(28)

and solving x(tR) = 1 yields

tR
tE

= eDR/ctR = ev/c (29)

and
zs = ev/c − 1 (30)

The two postulated causes of redshift give different results, which are similar only near 0 (for v << c).
Both predict distance-independent redshifts, which clearly disqualifies this mode of expansion.

6.3 Exponential Expansion

Doppler effect.

– Classical Doppler effect

The speed of the source at the time of light emission is

dDE

dt
= HDE (31)

whose value is obtained by solving x(tR) = 1,

zd = HDE

c
= 1− e−HDL/c (32)

As zd is always lower than 1, for the exponential expansion, the redshift can not exclusively result
from a classical Doppler effect.

– Relativistic Doppler effect

zr =
√
c+HDE

c−HDE
− 1 (33)
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Wave stretching. The wavelengths are stretched according to

λrec

λ
= DR

DE
= eH∆t = eHDL/c (34)

so that
zs = eHDL/c − 1 (35a)

whose reciprocal is

DL = c

H
ln(1 + zs) (35b)

6.4 Mixing Doppler and Stretching Effects for the Exponential Expansion

The results listed above are derived from formally describable modes of expansion, which are likely to not
apply to reality. The expansion mode may have changed and its parameters may have evolved in time.
In addition, different modes can be combined in a variety of manners. Let us examine only the case of
the exponential expansion. The Doppler and wave stretching redshift functions established above display
opposite behaviors near 0, clearly visualized by their series expansion. For the classical Doppler effect,

zd ≈
H0DL

c
− 1

2

(
H0DL

c

)2
(36a)

and for the wave stretching effect,

zs ≈
H0DL

c
+ 1

2

(
H0DL

c

)2
(36b)

By comparison with the traditional redshift formula z = H0D/c, the Doppler effect includes an
acceleration parameter, while the wave stretching effect contains a deceleration parameter. For nearby
galaxies, the so-called peculiar or ordinary velocities can not be neglected because they can either increase,
decrease or cancel the cosmological redshift. Generally, the task of astrophysicists is difficult to disentangle
the different interfering sources of wavelength shift, including gravity and peculiar velocities, and to
determine the specific contribution of expansion [15]. These technical problems however demonstrate
that several causes of redshift can actually interfere. After all, a recession velocity, though passive, could
remain a velocity and as such, could contribute as a kinetic Doppler effect to the redshift. Hence, for
completeness and by curiosity, let us cumulate the two effects, by taking into account the two hypotheses
on the origin of the redshift and two ways to bring them together will be considered.

Combined effects. Assuming, on the one hand, that the dilation of wavelengths caused by kinetic
Doppler effect (λdopp) is fixed at the emission point and then remains unchanged during the light flight
and assuming, on the other hand, that the emission wavelength is expanded during the trip, until received
in the form λrec, the cumulative effect would logically read

λrec

λ
= λrec

λdopp
λdopp

λ
(37)

using the classical Doppler effect,

zd+s = (1 + zd)(1 + zs)− 1 = 2zs (38)
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Additive effects. Alternatively, as wavelengths are lengths, they should perhaps be handled as such.
Adding the relative length increase caused by Doppler effect zd and that caused by stretching zs gives

zd+s = zd + zs (39)

Using the classical Doppler effect,

zd+s = eHDL/c − e−HDL/c = 2 sinh HDL

c
(40)

The redshift of dual origin of Eq.(40) gives a straighter redshift-distance diagram compared to its
individual components (made obvious by the cancellation of the squared terms in Eq.(36)). But if for
some reason the Doppler effect predominates for nearby galaxies, a bend would appear in the Hubble
diagram for low redshifts, mimicking a recent acceleration for galaxies of redshift below unity. A simple
function describing such hypothetic situation is z = 2 sinh(x)/(1 + x) with x = HDL/c. It is compared to
the observed redshifts of supernovae compiled in [16], represented in Fig.2 in linear coordinates (because
a logarithmic scale is poorly appropriate to visualize the straightness of a linear plot). Note that in fact,
this bend is currently considered as a recent change of H driven by dark energy [9].

Figure 2. Speculative curve fitting of the distance-redshift supernovae distribution (dots) with an exponential
expansion model in which the Doppler effect predominates at short distances while wave stretching predominates
at long distances (plain line). The redshift data are from [16] and include 186 supernovae. The fitting parameters
are c = 3× 108m/s and H = 3.23× 10−18/s, obtained by conversion of distance modulus (µ) in a non-logarithmic
scale using the relationship DL = 101+µ/510−6 Mpc.

7 Distance of a Source Inferred from Its Apparent Distance

The observed distance of cosmic objects (DL) does not correspond to any real distance, but the actual
distances can be deduced from DL provided a mode of expansion is selected.

– For the uniform expansion:

Since DL = c∆t, Eq.(17) gives

DE = DL
v/c

ev/c − 1
(41a)

Advances in Astrophysics, Vol. 2, No. 4, November 2017 227

Copyright © 2017 Isaac Scientific Publishing AdAp



and since DR = DE + v∆t,

DR = DL
v/c

1− e−v/c (41b)

These distances satisfy both the established distances relationship of Eq.(10) and the stretched shift
of Eq.(30).

– For the geometric expansion:

When x(tR) = 1, Eq.(19) gives

DE = ctR −DL

1− u

[(
1− DL

ctR

)u−1
− 1
]

(42a)

and

DR = ctR
1− u

[
1−

(
1− DL

ctR

)1−u
]

(42b)

– For the exponential expansion:

When x(tR) = 1, Eq.(22) gives
HDE = c

(
1− e−H∆t) (43a)

with DL = c∆t,
DE = c

H

(
1− e−HDL/c

)
= czd

H
(43b)

and
DR = c

H

(
eHDL/c − 1

)
= czs

H
(43c)

8 Conclusions

This study expands that of Harrison [15] which rationally derived the relationships between redshift
and distance in a purely mathematical manner, under certain types of expansion. A series of simple
conclusions can be drawn: For exponential expansion, the traditional redshift formula z = H0D/c is close
to zs = eH0DL/c − 1 only in the vicinity of D = 0 and z = H0D/c is valid only for the invisible actual
distance DR but not for the luminosity distance DL. Whatever the expansion mode, the two postulated
origins of the redshift: conventional Doppler and wave stretching effects, always give different results. The
mere existence of redshifts higher than 1 is sufficient to rule out the Doppler effect as the sole cause of
redshift in the case of the exponential expansion. Finally, the present calculations show that the only two
modes of expansion which are capable of generating disconnection barriers, are the exponential expansion
(Horizon at DE = c/H) and the geometric expansion if u > 1 (Horizon at DE = ctE/(u− 1)). A speculative
hypothesis is that as a signal-disconnecting barrier, the horizon could favour the development of life
in the universe. In a universe seeded with all the ingredients necessary for the onset of life, the main
danger threatening life, that’s life itself, with its lack of regard for life forms seen as inferior. Hence, if
communication was unrestricted in the universe, a bonus would be given to the rapidly developing forms,
but in fact slowly emerging, more complex forms could ultimately be the most effective if sufficient time
was given to them. The natural solution to this problem is to partition, at least temporarily, the world into
regions disconnected from each other by informational borders. If disconnection limits are conveniently
adjusted to the probabilities of life emergence, all forms of life could blossom and grow at their own
kinetics, without risk of competition with more advanced forms. The recipe for such a fragmentation is
the expansion of the space, provided a mode of extension preventing the signals from reaching other life
outbreak sites. As a consequence, if on average, a maximum of one form of life is expected in a connexion
sphere, our efforts to not feel alone in the universe might remain in vain.
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Table 1. Summarized consequences of the modes of expansion on the redshift, the horizon and the source-receiver
distances. Vrec is the apparent source velocity at emission. zd and zs are the redshifts calculated as Doppler
or wave-stretching effects respectively. DE is the source-receiver distance at emission, DR is the source-receiver
distance at reception and DL is the apparent distance actually measured. tR is the present time, approximated as
identical for all the measurements.
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