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Abstract The modulation instability of a dust ion-acoustic (DIA) wave in a highly collisional
dusty plasma is studied theoretically. In this investigation, effects of ionization, ion loss, and electron
superthermality on the DIA wave are included. By employing the standard reductive perturbation
technique, a modified-nonlinear Schödinger equation (mNLSE) is developed for the evolution of the
slowly varying amplitude of the DIA wave. A detailed analysis of the linear and nonlinear dispersions
of the DIA wave is presented. Relevant to some astrophysical objects with typical parameters, it is
found that the DIA wave is modulationally unstable below a certain critical wavenumber. Effects of
the electron superthermality as well as the ionization and ion loss in the wave dynamics are also
studied. It is found that the electron superthermality has a significant effect on the nonlinearity
as well as on the damping of the DIA wave. It is also found that the critical wavenumber for the
modulation instability is highly dependent on the parameter κ, known as the spectral index of the
electron superthermality. Numerical results on the linear and nonlinear dispersions of the DIA wave
are described. A parameter study on the Rouge wave solution of the mNLSE is also presented.

Keywords: Dust ion-acoustic (DIA) wave, collisional dusty plasma, superthermality of electron,
nonlinear Schödinger equation, modulation instability.

1 Introduction

In space plasmas, the presence of dust particles leads to different wave properties than in normal electron-
ion plasmas. For this reason, in the recent few years, dusty plasma has become a very interesting research
area both in the theoretical as well as experimental point of views [1,2,3,4,5,6,7,8,9,10,11,12,13]. Dusty
plasma is considered to be the admixture of electrons and ions with an additional component of dust
particles. Most of the current dusty plasma research is on the new aspects of collective interactions
and wave propagation. Charging of the dust particles are either positive or negative, depending on
the background plasma and the dust-particle charging processes. The charged dust particles in dusty
plasmas can significantly change the normal properties of plasma modes both in unmagnetized and
magnetized plasmas [14,15,16,17,18,19,20,21,22]. Theoretically, two types of acoustic modes are supported
by unmagnetized dusty plasmas, namely, dust acoustic (DA) wave involving mobile dust particles [17], and
dust ion-acoustic (DIA) wave involving both mobile ions and mobile dust particles [18]; and the existence
of these wave modes was later experimentally verified by Barkan et.al. [7,8]. Though the linear properties
of the DA and DIA waves in dusty plasmas are now completely understood both theoretically and
experimentally, but the nonlinear propagation of these waves are not fully understood. The propagation
of DA and DIA waves has received a great deal of interest to understand the features of localized
perturbations in space and laboratory dusty plasmas [23,24,25,26].

In a recent study, Mayout et. al. [27], have shown the effects of ionization and ion loss on DIA wave in
a collisional dusty plasma with suprathermal electrons. They have considered a one-dimensional (1D) DIA
wave propagation in the dusty plasma and have derived a set of fully nonlinear equations. By considering
the combined effects of ionization, ion loss, and electron suprathermality in the collisional dusty plasma,
finally, the authors of reference [27] have derived a modified Korteweg-de Vries (KdV) equation to describe
the dynamics of the DIA wave. These authors have studied both compressive and rarefactive DIA waves
and have not considered the amplitude modulation of these waves. As far as we know, the effects of
electron suprathermality, ionization and ion loss as well as collisional effects on the amplitude modulation
of DIA wave have not been considered previously.
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Motivated by Mayout et. al. [27], in the present paper, we consider a model for the 1D propagation of
a DIA wave pulse in a collisional dusty plasma with the inclusion of the electron suprathermality as well
as ionization and ion loss. We include a viscous damping term in the momentum balance equations due to
collisions of the dust and the ion components of the dusty plasma. Along with the linear properties of the
wave, we also study the amplitude modulation of the slow evolution of the dissipative DIA wave pulse
by deriving a modified nonlinear Schrĺodinger equation (mNLSE). We employ the standard reductive
perturbation technique [28] to derive the mNLSE for the propagation of the DIA wave in the collisional
dusty plasma. We also discuss the possible modulation instability of the electrostatic wave amplitude and
perform some parameter studies.

The paper is organized as follows. Section 2 describes the hydro-dynamical model of the collisional
dusty plasma and presents the set of highly nonlinear equations for the evolution of the large amplitude
DIA wave pulse. In Sec. 3, a mNLSE is derived by employing the reductive perturbation technique. The
solution of the derived mNLSE and a nonlinear dispersion relation and hence an expression for the growth
rate of the modulation instability of the dissipative DIA wave is derived in Sec. 4. Results are discussed
in Sec. 5 along with graphical representation. Finally, Sec. 6 concludes the paper.

2 The Mathematical Model

We consider a 1D collisional unmagnetized dusty plasma with negatively charged mobile dust grains,
consisting of superthermal electrons, inertial positively charged ions and immobile/stationary background
neutral particles.We consider in this dusty plasma situation, ionization and ion losses are present. Different
types of collisions: such as ion-neutral, ion-dust, and dust-neutral are expected in this collisional dusty
plasma. Here, −e, −Zde, and e are charges of electron, dust grain, and ion respectively. The quantities mj

and nj are the mass and the number density of plasma species j respectively. The subscripts j = e, i, d
denote respectively the electrons, ions, and dust grains. The nonlinear dynamics of the DIA wave is
described by the following set of equations in the normalized form [27]:

∂Nd
∂T

+ ∂

∂X
(NdVd) = 0, (1)

∂Vd
∂T

+ Vd
∂Vd
∂X

= βd
∂Φ

∂X
− νdnVd, (2)

∂Ni
∂T

+ ∂

∂X
(NiVi) = Qi −QL, (3)

∂

∂T
(NiVi) + ∂

∂X

(
NiV

2
i

)
= −Ni

∂Φ

∂X
− σi

∂Ni
∂X
− νidNi (Vi − Vd)− νinNiVi, (4)

∂2Φ

∂X2 = 1
δ

[(
1− Φ

κ− 3
2

)1/2−κ
− δNi + (δ − 1)Nd

]
, (5)

where σi = Ti/Te, δ = ni0/ne0, and βd = Zdmi/md. Here Tj and nj0 are respectively the temperature
and the equilibrium number density of plasma species j. The first term, in square bracket, of the
right-hand side of Eq. (5) indicates normalized number density of suprathermal electron [27], where
κ is the spectral index (usually κ > 3/2 [27]). The electrostatic potential Φ is normalized by Te/e,
the dust fluid velocity Vj is normalized by the ion-acoustic speed Ci = (Te/mi)1/2, and the particle
number density Nj is normalized by its equilibrium value nj0. The time variable is normalized by the
ion-plasma period ω−1

pi =
(
4πe2ni0/mi

)−1/2 and the space variable is normalized by the ion-Debye length
λDi =

(
Te/4πe2ni0

)1/2. The last term νdnVd in the right-hand side of Eq. (2) represents the frictional
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drag acting on the dust particles which arises during the collisions between dust and neutral particle at
frequency νdn. Similarly, the last two terms in the right-hand side of Eq. (4) represent the frictional drags
on the ions during ion-dust and ion-neutral collisions at frequencies νid and νin respectively. The term
QL(= νLNi) in Eq. (3) accounts for ion loss at frequency νL. Ion-electron recombination and absorption
of plasma particles by the dust grains are mainly responsible for this ion loss.

The term Qi(≈ νL [1 + (∆σ/σ0)Φ]) in Eq.(3) accounts for new ion creation through ionization of
the neutral gas by the fast suprathermal electrons, where σ0 and ∆σ = (dσ/dΦ)0 are respectively the
ionization cross-section and its derivative with respect to the electrostatic potential Φ at Φ = 0 [27]. It is
noted that the following terms νid, νin, νdn, and νL are normalized by the ion-plasma frequency ωpi and
Qi is normalized by ωpini0.

3 Derivation of the Modified Nonlinear Schrödinger Equation

We apply the reductive perturbation technique [28] to derive the mNLSE, by introducing the following
stretched coordinates: ξ = ε (X − v0T ) and τ = ε2T , where v0 is a constant and will be determined later
from the compatibility condition of the reductive perturbation analysis and ε is a smallness parameter
(0 < ε < 1) that measures the weakness of the dispersion. Now, we expand the dependent variables Nj ,
Vj , and Φ (j = d, i) in the power series of ε :

Nj = 1 +
∞∑
n=1

εn
∞∑

l=−∞
N

(n)
jl (ξ, τ) eil(kX−ωT ), (6)

Vj =
∞∑
n=1

εn
∞∑

l=−∞
V

(n)
jl (ξ, τ) eil(kX−ωT ), (7)

Φ =
∞∑
n=1

εn
∞∑

l=−∞
Φ

(n)
l (ξ, τ) eil(kX−ωT ), (8)

where ω and k are respectively the angular frequency and the wavenumber of the carrier DIA wave.
Experimental situations show that the normalized collision frequencies are very small, therefore, we
can use [29]: ν̄dn = νdnε

2, ν̄L = νLε
2, ν̄id = νidε

2, and ν̄in = νinε
2, where νdn, νL, νid, and νin are

finite quantities but less than unity. The quantities N (n)
jl (ξ, τ), V (n)

jl (ξ, τ), and Φ(n)
l (ξ, τ) are the l−th

harmonic of the n−th order slowly varying field variables and these variables satisfy the reality condition
A

(n)
−l ≡ A

(n)∗
l , where the asterisk denotes complex conjugation. We mentioned that the stretched variables

and the expanded variables in Eqs. (6)-(8) are employed and accordingly we have two coordinate systems:
(X,T ) coordinate system, in which there is a rapid variation of the field quantities of the carrier wave
with wavenumber k and angular frequency ω; and the (ξ, τ) coordinate system, in which there is a slowly
modulated wave packet. If we now substitute the expansions of Nj , Vj and Φ of field variables from
Eqs. (6)-(8), into the set of Eqs. (1)-(5), we can easily get the l−th harmonic of the n−th order reduced
equations. Listing of those reduced equations are not shown here as they are very lengthy and readers
also will not be much curious.

If we consider the first harmonic of the first order quantities (n = 1 and l = 1), in the reduced
equations, the following linear dispersion relation of the DIA wave in the collisional dusty plasma is easily
obtained:

k2
[

δ

ω2 − k2σi
+ βd(δ − 1)

ω2 − δ
]

= α, (9)

where α = (κ − 1/2)/(κ − 3/2), and the parameters δ, σi, and βd are defined earlier. From the first
harmonic of the second order quantities (n = 2 and l = 1), and using Eq. (9), we obtain the following
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compatibility condition:

(δ − 1)
ω

(v0a1 − a2) + k(δ − 1)
ω2 (v0a2 + βd)

− kδ

ω2 − k2σi
(v0a4 − σia3 − 1)− ωδ

ω2 − k2σi
(v0a3 − a4) = 2kδ, (10)

where a1 = −k2βd/ω
2, a2 = −kβd/ω, a3 = k2/

(
ω2 − k2σi

)
, and a4 = kω/

(
ω2 − k2σi

)
. The above

compatibility condition, Eq. (10), gives the expression for the group velocity v0 as:

v0 =
[
2kδ − k (a3σi + 1) δ

ω2 − k2σi
− ωa4δ

ω2 − k2σi
− kβd(δ − 1)

ω2 + ωa2(δ − 1)
ω2

]
×
[
− ka4δ

ω2 − k2σi
− ωa3δ

ω2 − k2σi
+ ka2(δ − 1)

ω2 + ωa1(δ − 1)
ω2

]−1
. (11)

It would be wise to mention here that, we are particularly interested in the lower-frequency limit of the
dust ion-acoustic wave mode for longer wavelength perturbation (ω, k).

Here, we are not going through a detailed derivation of the mNLSE, but a brief procedure is stated.
From the l = 2 part of the second order (n = 2) reduced equations, the second order harmonic mode
Φ

(2)
2 of the carrier wave is obtained in terms of Φ(1)

1 Φ
(1)
1 , where Φ(1)

1 is the first order mode, obtained in
deriving the linear dispersion relation, Eq. (11) of the DIA wave. The mode Φ(2)

2 comes from the nonlinear
self-interaction. Similarly, from the l = 0 part of the third order (n = 3) reduced equations, the zeroth
harmonic mode Φ(2)

0 is obtained in terms of
∣∣∣Φ(1)

1

∣∣∣2. Its expression cannot be obtained from the second

order equations. Finally, substituting the expressions for Φ(2)
2 and Φ(2)

0 into the l = 1 component of the
third order (n = 3) part of the reduced equations, we finally obtain the following mNLSE for the slow
evolution of the dissipative DIA wave:

i
∂a

∂τ
+ P

∂2a

∂ξ2 +Q|a|2a = −iRa, (12)

where a ≡ Φ(1)
1 and

P = [δ + g1b4 + g2b3 − g3b2 − g4b1] [a1b4 + a2b3 − a3b2 − a4b1]−1
, (13)

Q = [b1f4 + b2f3 − b3f2 − b4f1 − 2βh] [a1b4 + a2b3 − a3b2 − a4b1]−1
, (14)

and

R = [a2b3ν̄dn + b1 (a2 − a4) ν̄id − a4b1ν̄in − b2 (a3 −∆σ/σ0) ν̄L] [a1b4 + a2b3 − a3b2 − a4b1]−1
. (15)

The parameters b1, b2, b3, and b4 are given by b1 = kδ/
(
ω2 − k2σi

)
, b2 = ωδ/

(
ω2 − k2σi

)
, b3 = k(δ−1)/ω2,

and b4 = ω(δ− 1)/ω2. The other parameters f1, f2, f3, f4, g1, g2, g3, g4 and h appearing in Eqs. (13)-(15)
are listed in the Appendix A.

The coefficients P and Q appearing in the mNLSE, Eq. (12), are known as dispersion coefficient
and nonlinear coefficient respectively. The signs of P and Q determine whether the slowly varying wave
amplitude is modulationally stable or not. If the signs of P and Q are such that PQ < 0 then the wave
amplitude is modulationally stable and the corresponding solution of the mNLSE is called a dark soliton
[30] when the dissipation R is considered as zero. But, if PQ > 0, then the wave amplitude may be
modulationally unstable and the solution of the mNLSE is called a bright soliton [30] if the dissipation
R is considered as zero. It is remarkable that whether dark soliton or bright soliton appears, it is only
when the right-hand side of Eq. (12) is zero, i.e., in the situation when there is no dissipation. On the
other hand, in the viscous-case (R 6= 0), i.e., if there is some dissipation in the system, the mNLSE does
not admit any stationary envelope solitonic solution. However, we are particularly interested about the
modulation instability of the nonlinear DIA wave in the longer wavelength limit, and this will be discussed
later.
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Figure 1. Variation of the angular frequency ω with respect to the propagation wavenumber k of the dust
ion-acoustic wave for different values of the spectral index κ. The solid curve is for κ = 1.7, the dotted curve is for
κ = 2, the dashed curve is for κ = 5, and the dot-dashed curve is for κ = 50. The other parameters of the plasma
are the following: δ = ni0/ne0 = 2.2, σ = 0.033, βd = 3.75× 10−6, and ν̄id = 0, ν̄in = 0, ν̄dn = 0, ν̄L = 0.

4 Solution of the mNLSE and Modulation Instability of the DIA Wave

Here, we present the dissipative nonlinear DIA wave solution of the mNLSE, Eq. (12), within the
instability region, where the signs of the dispersion coefficient P and the nonlinear coefficient Q of
the mNLSE are same, i.e., PQ > 0. The required solution can be easily obtained by substituting
a(ξ, τ) = Φ0(ξ, τ) exp (−Rτ) [31] into Eq. (12), we get:

i
∂Φ0

∂τ
+ P

∂2Φ0

∂ξ2 + e−2RτQ|Φ0|2Φ0 = 0. (16)

Since the damping (dissipative) coefficient R is very small, so by the Taylor expansion, we have e−2Rτ ≈
1/(1 + 2Rτ). Using this approximation, Eq. (16) can be written as

i
∂Φ0

∂τ
+ P

∂2Φ0

∂ξ2 +QσD|Φ0|2Φ0 = 0, (17)

where σD(τ) = e−2Rτ ≈ 1/(1 + 2Rτ). By substituting ζ(ξ, τ) = σD(τ)ξ, χ(τ) = σD(τ)τ , and Φ̂ =
Φ0 exp

[
i
(
RσD(τ)ξ2/2P

)]
, we can transform Eq. (17) into the following standard NLSE:

i
∂Φ̂

∂χ
+ P

∂2Φ̂

∂ζ2 +Q|Φ̂|2Φ̂ = 0. (18)

The solution of the NLSE, given by Eq. (18), is localized both in position ζ and time χ, which are
equivalent respectively to the position and time variables ξ and τ . The resulting solution of the above
equation then can be written as [32]:

a(ξ, τ) =

√
2P
Q

[
4 + 16iPσD(τ)τ

1 + 16{PσD(τ)τ}2 + 4{σD(τ)ξ}2 − 1
]

exp
[
−i
{
RσD(τ)ξ2

2P

}]√
σD(τ). (19)
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Figure 2. Variation of the group velocity v0 with respect to the propagation wavenumber k of the dust ion-acoustic
wave for different values of the spectral index κ. The solid curve is for κ = 1.7, the dotted curve is for κ = 2, the
dashed curve is for κ = 5, and the dot-dashed curve is for κ = 50. The other parameters of the plasma are the
following: δ = ni0/ne0 = 2.2, σ = 0.033, βd = 3.75× 10−6, and ν̄id = 0, ν̄in = 0, ν̄dn = 0, ν̄L = 0.

The above solution Eq. (19) predicts that the DIA wave is confined in a small region due to the nonlinear
properties of the collisional dusty plasma. This solution is able to concentrate a significant amount of the
wave energy into a relatively small area in space [32]. In the next section, the dissipative solution, Eq.
(19), of the mNLSE, Eq. (12), is plotted against the position coordinate ξ for a fixed value of τ , taking R
(responsible for the dissipative effect) as a parameter.

Now, let us analyze the modulation instability of the dissipative DIA wave described by the mNLSE,
Eq. (12), in the case of PQ > 0, where P and Q are respectively the dispersive coefficient and nonlinear
coefficient. We write the amplitude a(ξ, τ) as [31]:

a(ξ, τ) = [a0 + δa(ξ, τ)] exp
[
−i
∫ τ

0
∆(τ) dτ −Rτ

]
, (20)

where ∆ is a possible nonlinear frequency shift, and a0 (real constant) is the amplitude of the pump
carrier wave. By expanding δa(ξ, τ) as

δa(ξ, τ) = (U + iW ) exp
[
i

(
Kξ −

∫ τ

0
Ω(τ) dτ

)]
, (21)

with U and W respectively the real and imaginary parts of δa(ξ, τ). Now using Eqs. (12), (20) and (21)
the following nonlinear dispersion relation for the modulation of the DIA wave is obtained:

Ω2 =
(
PK2)2

(
1− K2

c (τ)
K2

)
, (22)

where K2
c (τ) =

(
2Q |a0|2 /P

)
exp (−2Rτ). From Eq. (22), the local-instability growth rate is obtained as

Γ ≡ Im[Ω(τ)] =
∣∣PK2∣∣ (K2

c (τ)
K2 − 1

)1/2

. (23)
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Figure 3. The variation of the ratio P/Q of the coefficients of the dispersive and the nonlinear terms of the NLSE
versus the carrier wavenumber k for smaller values of the spectral index κ. The solid curve is for κ = 1.7, the dotted
curve is for κ = 1.8, and the dashed curve is for κ = 2.2. The other parameters of the plasma are the following:
δ = ni0/ne0 = 2.2, σ = 0.033, βd = 3.75× 10−6, ν̄id = 3.8× 10−2, ν̄in = 0.15, ν̄dn = 0.15, ν̄L = 5.4× 10−2, and
∆σ/σ0 = 2.

The instability growth will cease when

τ ≥ τmax = 1
2R ln

(
2Q |a0|2

PK2

)
. (24)

Thus, we can say that τmax is the modulation instability period in the dissipative plasma. However, this
instability period is absent in plasmas without dissipation.

5 Results and Discussions

In this section, we analyze the linear as well as nonlinear DIA wave dispersion relations. For the
numerical analysis of our results, we consider the following typical parameters of the collisional dusty
plasma [27,33,34,35,36,37]: Te = 3 eV, Ti = 0.1 eV, ni0 = 2 × 109 cm−3, Zd = 75, md/mi = 2 × 107,
νL = 5.4× 10−2, νid = 3.8× 10−2, νin = 1.5× 10−1, νdn = 1× 10−2, and κ = 1.6− 10.

Figure 1 shows the variation of the angular frequency ω with respect to the propagation wavenumber
k of the carrier DIA wave (the linear dispersion relation) for different spectral index κ of the electron
suprathermality (the solid curve is for κ = 1.7, the dotted curve is for κ = 2, the dashed curve is for
κ = 5 and the dot-dashed curve is for κ = 50). It is seen that the angular frequency increases with the
increase of the spectral index κ of the electron suprathermality. However, this increase is significant only
for the lower values of κ. We can see when κ = 5 and κ = 50, the change of angular frequency is not
much, whereas when κ = 1.7 and κ = 2, there is a noticeable change in the angular frequencies. In this
plot the effect of ionization, ion loss and collisions have been omitted.

Figure 2 shows the variation of the group velocity v0 of the DIA wave with respect to the propagation
wavenumber k for different values of the spectral index κ of the electron suprathermality. It is seen that
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Figure 4. The variation of the ratio P/Q of the coefficients of the dispersive and the nonlinear terms of the
mNLSE versus the carrier wavenumber k for comparatively larger values of the spectral index κ. The solid, dotted
and the dashed curves are respectively for κ = 5, κ = 10, and κ = 50. The other parameters of the plasma
are the following: δ = ni0/ne0 = 2.2, σ = 0.033, βd = 3.75 × 10−6, ν̄id = 3.8 × 10−2, ν̄in = 0.15, ν̄dn = 0.15,
ν̄L = 5.4× 10−2, and ∆σ/σ0 = 2.

for comparatively longer wavelength perturbation, the group velocity increases by increasing the spectral
index κ while for comparatively shorter wavelengths (when k > 0.75 (approximately)), the group velocity
decreases with κ. It is noticeable that for larger values of κ (like κ = 5 and κ = 50) the change in the
group velocity is negligible. (Please see the dashed and the dot-dashed curves).

Figure 3 shows the variation of P/Q (ratio of the dispersion coefficient and the nonlinear coefficient
of the mNLSE, Eq. (12)) with respect to the propagation wavenumber k for different values of spectral
index κ. In this figure, the smaller values of κ is considered (the solid curve is for κ = 1.7, the dotted
curve is for κ = 1.8, and the dashed curve is for κ = 2.2). It is observed that the critical wavenumber
for the modulationally unstable regime to modulationally stable regime increases when spectral index κ
decreases. It is seen that as the value of the spectral index κ increases, there is a shift of the peak of the
curve (corresponding to the critical wavenumber) to the left in the wavenumber k axis.

Figure 4 shows the variation of P/Q with respect to the propagation wavenumber k for comparatively
larger values of the spectral index κ (the solid curve is for κ = 5, the dotted curve is for κ = 10, and the
dashed curve is for κ = 50). It is observed that for comparatively larger values of the spectral index κ,
there is no critical wavenumber in the range 0 < k ≤ 1, but there is a critical wavenumber somewhere in
the range 1 < k < 1.5. It is also seen that there is no noticeable change of the critical wavenumber with
the spectral index κ for the modulationally unstable regime to modulationally stable regime, and the
shift of the peak of the curve is also not noticeably changed.

Figure 5 shows the variation of the damping coefficient R with respect to the propagation wavenumber
k for different values of the spectral index κ (the solid curve is for κ = 1.6, the dotted curve is for κ = 2
and the dashed curve is for κ = 10). It is seen that as the spectral index κ increases then the damping
coefficient R decreases for longer wavelength perturbation. It is also found that when κ = 1.6 and the
propagation wavenumber k in the range of 0 < k < 2 then there is no change in the damping coefficient
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Figure 5. The variation of the damping coefficient R of the mNLSE versus the carrier wavenumber k for different
κ. The solid curve is for κ = 1.6, the dotted curve is for κ = 2, and the dashed curve is for κ = 10. The other
parameters of the plasma are the following: δ = ni0/ne0 = 2.2, σ = 0.033, βd = 3.75 × 10−6, ν̄id = 3.8 × 10−2,
ν̄in = 0.15, ν̄dn = 0.15, ν̄L = 5.4× 10−2, and ∆σ/σ0 = 2.

Figure 6. Variation of the modulus-square |Φ(ξ, τ)|2 of the amplitude of the nonlinear dissipative DIA wave with
respect to the position coordinate ξ, and time τ , taking κ = 2. The other parameters are the following: k = 0.7,
δ = ni0/ne0 = 2.2, σ = 0.033, βd = 3.75× 10−6, ν̄id = 3.8× 10−2, ν̄in = 0.15, ν̄dn = 0.15, ν̄L = 0, and ∆σ/σ0 = 2.

R with respect to the wavenumber k, whereas for κ = 10 the damping coefficient R increases very fast
with the increase of the wavenumber k. Thus, for larger values of the parameter κ (called the spectral
index), the damping coefficient is a sensitive function of the wavenumber k.

Figure 6 shows the modulus square of the amplitude of the nonlinear dissipative DIA wave, |a|2, with
respect to the position ξ and time τ for the spectral index κ = 2 where the ionization and ion loss are not
considered. It is seen that the amplitude of the nonlinear DIA wave drastically falls with the increase
of time τ . This happens because there is no ionization whereas there are collisions among the different
species.
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Figure 7. Variation of the modulus-square |Φ(ξ, τ)|2 of the amplitude of the nonlinear dissipative DIA wave with
respect to the position coordinate ξ, taking τ = 40 taking spectral index κ as a parameter. The solid, dotted and
the dashed curves are respectively for κ = 1.6, κ = 1.7, and κ = 2. The other parameters are the following: k = 0.5,
δ = ni0/ne0 = 2.2, σ = 0.033, βd = 3.75× 10−6, ν̄id = 3.8× 10−2, ν̄in = 0.15, ν̄dn = 0.15, ν̄L = 0, and ∆σ/σ0 = 2.

Figure 7 shows the modulus square of the amplitude of the nonlinear dissipative DIA wave |a|2 with
respect to the position coordinate ξ at a fixed time τ = 40 and for different values of the spectral index κ
(the solid curve is for κ = 1.6, the dotted curve is for κ = 1.7 and the dashed curve is for κ = 2). It is
seen that the amplitude of the nonlinear DIA wave drastically increases as the spectral index κ increases.

Figure 8 shows the variation of the damping coefficient R with respect to the propagation wavenumber
k for different values of the spectral index κ (the solid curve is for κ = 1.6, the dotted curve is for κ = 1.7
and the dashed curve is for κ = 2). In this figure, the collisions in the plasma system are omitted. Here
collisions are omitted but ionization and ion loss are considered in the plasma. It is seen that the damping
coefficient R is very small, even for κ = 2, at the very longer wavelength perturbation. It is important to
mention here that the damping coefficient R becomes negative indicating that instead of damping there
can be instability for the cause of ionization.

6 Conclusion

In this work, we have studied the linear and nonlinear dispersions of a DIA wave propagating in a
collisional dusty plasma along with the electron suprathermality and the dissipation effects due to the
collisions among ion-dust, ion-neutral and dust-neutral particles. Here, a mNLSE is derived by using the
standard reductive perturbation technique for the slow evolution of the DIA wave amplitude. We found
that for typical parameters of the collisional dusty plasma, relevant to some astrophysical systems, the
DIA wave amplitude is modulationally unstable below a certain value of the carrier wavenumber k. It is
found from our numerical analysis that the carrier wavenumber and the suprathermality of electrons as
well as the ionization and ion loss have profound effects on the dispersion properties of the DIA wave.
Finally, we would like to emphasize that the results obtained from the current investigation presented in
this paper may be useful to explain modulation instability and envelope soliton excitations of DIA waves
in some astrophysical and space plasmas where superthermal electrons are present.
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Figure 8. The damping coefficient R with respect to the carrier wave number k taking the spectral index κ as a
parameter. The solid, dotted and the dashed curves are respectively for κ = 1.6, κ = 1.7, and κ = 2. The other
parameters of the plasma are the following: k = 0.5, δ = ni0/ne0 = 2.2, σ = 0.033, βd = 3.75× 10−6, ν̄id = 0.0,
ν̄in = 0.0, ν̄dn = 0.0, ν̄L = 5.4× 10−2, and ∆σ/σ0 = 2.

Appendix A

The parameters f1, f2, f3, f4, g1, g2, g3, g4 and h appearing Eqs. (13)-(15) during the derivation of the
mNLSE are listed below:

f1 = k [a1a21 + a2a33 + a2a20 + a1a34] , (A1)

g1 = v0a9 − a10, (A2)

f2 = k [a2a21 + a2a34] , (A3)

g2 = v0a10, (A4)

f3 = k [a3a23 + a3a36 + a4a22 + a4a35] , (A5)

g3 = v0a11 − a12, (A6)

f4 = −ω (−a3a23 + a3a36 + 2a4a22) + ωa2
3a4

+2k (a4a23 + a4a36) + ka2
4a3 − kσi (a3a22 + a3a35) , (A7)

g4 = v0a12 − σia11, (A8)

h = a19 + a32, (A9)

where a1, a2, a3, a4, b1, b2, b3, b4 are defined earlier and the remaining other parameters are defined
below:

a5 = v0a1 − a2, (A10)

a6 = v0a2 + βd, (A11)

a7 = v0a3a4, (A12)
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a8 = v0a4 − σia3 − 1, (A13)

a9 = ωa5 + ka6

ω2 , (A14)

a10 = v0a2 + βd
ω

, (A15)

a11 = ωa7 + ka8

ω2 − k2σi
, (A16)

a12 = ω

k
a11 −

a7

k
, (A17)

a13 = −ka1a2, (A18)

a14 = k2

2 a
2
2, (A19)

a15 = −ka3a4, (A20)

a16 = 1
2
[
ωa3a4 − 2ka2

4 + kσia
2
3
]
, (A21)

a17 = − 1
ω2 [ωa13 − ka14] , (A22)

a18 = −1
ω2 − k2σi

[ωa15 + ka16] , (A23)

a19 = β + a17(δ − 1)− a18δ

a3δ − a1(δ − 1)− (4k2 + α) , (A24)

a20 = a1a19 + a17, (A25)

a21 = ω

k
a20 + a13

k
, (A26)

a22 = a3a19 + a18, (A27)

a23 = ω

k
a22 + a15

k
, (A28)

a24 = −2a1a2, (A29)
a25 = a2, (A30)

a26 = −2a3a4, (A31)
a27 = −ωa4a11 + ωa3a12 + v0a3a4 − 2a2

4 + a2
3σi, (A32)

a28 = 1
v2

0
[a25 − v0a24] , (A33)

a29 = 1
v0
a25, (A34)

a30 = a27 + v0a26

σi − v2
0

, (A35)

a31 = v0a30 + a26, (A36)

a32 = 2β − a30δ + a28(δ − 1)
−α− δ

σi−v0
+ βd(δ−1)

v2
0

, (A37)

a33 = βd
v2

0
a32 + a28, (A38)

a34 = βd
v0
a32 + a29, (A39)

a35 = −a32

σi − v0
+ a30, (A40)

a36 = −v0

σi − v0
a32 + a31. (A41)
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