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Abstract We investigate if starting from EEG signals it is possible to classify salient audio events.
We set up an experiment and collected EEG data with proper audio stimuli. We trained several kNN
classifiers. As the EEG signals under different frequency bands are related to different brain activities,
we analyzed EEG data from each single electrode and for each single frequency band, as well as
EEG data from combined electrodes and frequency bands. From our preliminary analysis we found
that for each frequency band there is a set of electrodes that permits to achieve better classification
results and these electrodes are related to specific brain regions. We propose a cross-subject approach,
where different classifiers are trained on each single individual, and tested on data collected from all
the others. This initial investigation suggests several hints to improve this classification task.
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1 Introduction

Attention plays a very important role by separating relevant signals from irrelevant ones. Understanding
brain behavior in presence of salient stimuli can be useful in the field of Brain Computer Interface (BCI)
and Human Computer Interaction (HCI). Human machine interactions have become frequent in modern
life. In order to make this collaboration more efficient, machines should understand when we are alert,
and attentive or engaged in focused mental activity. Spatial saliency has been investigated in a very large
number of behavioral, functional brain-imaging and theoretical studies [1,2], but less attention has been
paid to auditory saliency [3,4,5]. However, when interacting with reality or observing a video, humans are
not only driven by visually salient stimuli but also by auditory salient ones. While many computational
models are available for the case of visual saliency maps [6,7,8], fewer models exist for acoustic attention
[9]. Within this context, the aim of this work is to investigate if it is possible to classify salient audio
events starting from EEG data. Different authors have shown that auditory attention can modulate EEG
responses sufficiently to be used as a control mechanism in BCIs [10,11,12]. For example, auditory-event
related potential (P300) BCI spelling system for locked-in patients is widely used [13,14]. A BCI could be
constructed that determines how the locked-in patient is focusing attention, using such information to
navigate a command menu or control a device. Using EEG responses to better understand the mechanism
of auditory attention can also be very useful to improve hearing aids technology.

In this article we present an analysis and investigation that aims to help in the understanding of
auditory attention and measurable brain signals correlates. The works in the state of the art focus on
different and complementary aspects of the study here presented. For example, temporal and spatial
attention has been studied using EEG, considering auditory binaural cues and unilateral ones [15]. Several
works instead have been recently done on emotional state classification from EEG data both in case of
visual and audio stimuli. These works have provided a reference for our work [16,17]. One of the challenges
of studies of auditory salience is the open interpretation of what auditory salience refers to. Some works
in the literature address the study of simple beep tones as salient stimuli [18]. Instead, in the present
work we focus on more complex salient stimuli like for example animal sounds (horse, rooster), the sound
of a telephone or a knock, superimposed with background stimuli like music or rain, among others. In the
results here presented we used EEG data recorded by using a 16 electrodes Emotiv EPOC device. To
generate these data, we have setup an experiment in our laboratory with proper stimuli composed by a
background track where a salient sound is superimposed. Data acquisition and dataset generation are
described in Section 2. In the preliminary analysis here reported we consider kNN as binary classifier.
The features adopted are evaluated in both time and frequency domains on the EEG data. Details on
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this classification approach are reported in Section 4. We have trained several kNN classifiers, different
for what concerns training and test data to investigate from different point of views how brain activity is
related to auditory attention. We here also propose a cross-subject approach, where different classifiers
are trained on each single individual, and tested on data collected from all the others. The performance
of these different classifiers are reported and compared in Section 5. Finally in the conclusions several
suggestions for future works are proposed to improve the classification performance.

2 EEG Data Acquisition

In our study we have performed two experimental sessions involving a total of 20 subjects, mean age 30,
std 8, 6 female, 14 male. All subjects involved were volunteers, recruited among students, and researchers
of our department at the University of Milano Bicocca. All of them had normal hearing and none had
a known history of neurological disorders. No participants under the age of 18 were involved in our
study. Informed consent was given by all subjects and the study was conducted in conformity with the
declaration of Helsinki.

Each experimental session consists of 10 trials (audio stimuli) of 14 seconds each, alternated with 4
seconds of silence, as depicted in Figure 1. Each trial corresponds to an audio stimulus where a salient
sound is superimposed to an audio background. We have generated a database of 18 audio stimuli (trials),
combining 9 different audio backgrounds with 12 salient sounds, listed in the first and second columns of
Table 1, respectively. Finally, the 10 trials adopted in the two experimental sessions are listed in the last
two columns of the same Table.

Table 1. Audio stimuli (trials) adopted in our two experimental sessions starting from a set of background audios
and salient sounds

background salient sound Trials of experiment 1 Trials of experiment 2
S=Sea horse R-telephone NAM1-horse

P=Pianoforte rooster P-shrill S-rooster
R=Rain scream S-scream H-gun

H=Helicopter notification NAM2-horse P-shrill
IM=Instrumental Music gun RM2-notification S-scream
NAM1=New Age Music 1 telephone IM-synthetic1 R-telephone
NAM2=New Age Music 2 knock P-synthetic2 RM2-notification
RM1=Relaxing Music 1 shrill R-honk IM-wobble
RM2=Relaxing Music 2 honk NAM1-rooster RM2-knock

wobble NAM2-shrill R-gun
synthetic1
syntetic2

EEG data were recorded using an Emotiv EPOC+ 16-channel EEG wireless recording headset (Emotiv
Systems Inc., San Francisco, CA, USA). The electrode scheme was arranged according to the international
10− 20 system and included 14 active electrodes at AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4,
F8, and AF4 positions, and two electrodes used as reference (CMS and DRL) (see Figure 2).

EEG data are acquired with an internal sampling frequency of 2048 Hz. These data are proper
bandpass filtered to avoid aliasing using hardware filters and down-sampled to 128 Hz with a precision of
16 bit. Special attention was taken to put the headset in an appropriate manner on each subject’s head.
All subjects were instructed to remain as still as possible, with closed eyes in order to minimize muscular
and occipital artifacts during the EEG recordings.

3 Processing of EEG Raw Data

For each subject we have recorded 14 raw mono dimensional signals corresponding to the 14 active
electrodes. We have preprocessed these data using EEGLab, an open source environment for electrophysi-
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Table 2. Features adopted

simple statistics mean, standard deviation, skewness and kurtosis
δ: mean of the absolute value of the first differences δ = 1/(N − 1)

∑N−1
i=1 |x(i+ 1)− x(i)|

δ2: mean of the absolute value of the second differ-
ences

δ2 = 1/(N − 2)
∑N−2

i=1 |x(i+ 2)− x(i)|

Signal Energy (E): is defined as the area under the
squared signal

E =
∑N−1

i=0 |x(i)|2

Sub-Band Energy (EB): is the signal energy in a
given sub-band B, where MB is the highest fre-
quency index in that sub-band

EB =
∑MB

n=0 |X(n)|2,

Frequency Centroid (FC): represents the average
point of the spectral power distribution

FC =
∑M

n=0
n|X(n)|2∑M

n=0
|X(n)|2

Frequency Bandwidth (FB): is defined as the size
of frequency interval assigned to a signal

FB =

√∑M

n=0
(n−F C)2|X(n)|2∑M

n=0
|X(n)|2

Figure 1. EEG data acquisition protocol
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Figure 2. Emotiv Epoc electrode scheme

ological signal processing [19], to obtain signals in the following three frequency bands: Alpha 8− 12 Hz
(α), Beta 12− 30 Hz (β), and Gamma 30− 80 Hz (γ). Alpha waves are mainly found in the occipital
region of the brain and they are related to memory brain functions and mental efforts. Increasing mental
effort causes a suppression of alpha activity [20]. Beta brain waves are recorded in the frontal and central
regions of the brain and they dominate when attention is directed towards cognitive tasks. They are
present when we are alert, attentive, engaged in problem solving, judgment, decision making, and engaged
in focused mental activity [21]. Finally, Gamma activity seems to play a significant role in the perception
of both visual and auditory stimuli [22]. We have discarded Delta (below 4 Hz) and Theta (4− 8 Hz)
frequency bands as they seem to be not so relevant in healthy and awake adults [23]. Thus we denote the
EEG data adopted for our classification task as: EEGwave,e(t, s), where wave = α, β, γ, e refers to the 14
active electrodes listed in the previous section and depicted in Figure 2, t refers to the 18 trials (see Table
1), and s is the considered subject, with s = 1, ..., 20.

4 Saliency Classification

In this work we have considered a kNN classifier, with euclidean distance and k = 10 neighbors to classify
auditory salient events.

To generate the ground-truth data, each audio stimulus (trial) has been segmented into non overlapping
frames of 0.125 seconds, obtaining (14 seconds/0.125 seconds =) 112 frames each. These frames have
been manually labeled as salient (1) or no-salient (0).

Each data signal EEGwave,e(t, s) has also been segmented to obtain F = 112 frames of ∆t = 0.125
seconds, corresponding to N=16 samples, and on each frame, features in both time and frequency domains
have been evaluated. The list of the ten considered features is reported in Table 2 [24,25]. Giving subject s,
trial t, sensor e and brain wave wave, we adopt the simplified notation x(i) to denote the i− th amplitude
sample of each of the F frames of EEGwave,e(t, s). In the frequency domain, we use X(n) to denote the
DFT of each frame of the signal in time domain.

Thus the data available to be used in the classification task is done by: 2 experimental sessions × 10
subjects × 10 trials × 112 frames × 14 electrodes × 3 brain waves × 10 features.
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5 Results and Discussion

We have evaluated several kNN classifiers, with different intents, varying the training data, the test data
and the adopted features. In the 18 trials here considered, the number of salient and no-salient frames is
strongly unbalanced. For this reason in the training data of all the considered classifiers we have randomly
chosen the no-salient frames among those available to be balanced with respect to the salient ones. For
each classifier we have adopted a Z-score normalization of the features so that they all have the properties
of a standard normal distribution with zero mean and σ = 1.

5.1 Best Predictor among Subjects

In the first analysis we are interested in evaluating the performance of each of the 10 subjects involved in
the first experimental session in predicting the 10 subjects involved in the second experimental session,
with the aim of finding the one that can be considered as the best ‘predictor’. To this end we have trained
10 classifiers CS(s) on the data collected for each subject (s = 1, ..., 10) involved in the first experimental
session. We have considered the EEG responses to all the 14 electrodes across all EEG frequency bands.
For each of these classifiers, we have 252 training frames labeled as salient (126), and no-salient (126) and
for each frame a feature vector of 140 elements (10 features × 14 electrodes). We have tested each of
these classifiers on the data collected from each of the subjects of the second experiment (s = 11, ..., 20).
The performance of these classifiers are reported in terms of accuracy, recall, precision and F-measure
averaged with respect to the 10 subjects of the test sets (s = 11, ..., 20). These values are shown in Table
3. From this analysis it emerges that CS(7) can be chosen as the best predictor, considering all the brain
waves, and all the sensors together.

Table 3. Performance of each of the CS(s) classifiers built on each of the subjects involved in the first experimental
session (s = 1, ..., 10), and tested on the data obtained from the second experimental session (s = 11, ..., 20)

CS(1) CS(2) CS(3) CS(4) CS(5) CS(6) CS(7) CS(8) CS(9) CS(10)
Accuracy 0.49 0.50 0.50 0.50 0.50 0.47 0.50 0.50 0.49 0.51
Recall 0.13 0.34 0.64 0.35 0.40 0.18 0.80 0.37 0.26 0.51

Precision 0.47 0.51 0.51 0.51 0.52 0.45 0.51 0.52 0.51 0.52
F-measure 0.20 0.41 0.57 0.41 0.45 0.25 0.62 0.43 0.34 0.52

Table 4. Performance of Cfinal(7) classifier built on subject 7 of the first experimental session and tested on
the data obtained from all the 10 subjects of the second experimental session (s = 11, ..., 20), and corresponding
average values

Subj 11 Subj 12 Subj 13 Subj 14 Subj 15 Subj 16 Subj 17 Subj 18 Subj 19 Subj 20 average
Accuracy 0.59 0.52 0.53 0.57 0.55 0.53 0.53 0.63 0.54 0.54 55
Recall 0.69 0.65 0.66 0.59 0.61 0.56 0.60 0.63 0.60 0.62 62

Precision 0.58 0.53 0.53 0.58 0.55 0.52 0.53 0.62 0.53 0.53 55
F-measure 0.63 0.58 0.59 0.58 0.58 0.54 0.56 0.63 0.57 0.57 58

5.2 Optimal Electrodes with Respect to the Brain Wave

In this analysis we are interested in finding the electrodes that permit the best classification accuracy
with respect to the three different frequency bands here considered. To this end we heve trained 420
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classifiers Call(s, wave, e), one for each subject (s = 1, ..., 10) of the first experimental session and for
each brain wave (wave = {α, β, γ}), and considering all the 14 electrodes e. For each of these classifiers,
we have 252 training frames labeled as salient (126), and no-salient (126) and for each frame a feature
vector of 10 elements. We have tested each of these classifiers on the data collected from each of the
subjects of the second experiment, with respect to the corresponding brain wave and electrode. Thus
each classifier (Call(s, wave, e)), has been tested on 10 test sets TS(s, wave, e), obtained considering the
s=11,...,20 subjects involved in the second experimental session. For each brain (wave wave=α, β, and
γ), and sensor e, we have averaged the classification accuracies over the observers both in the training
and in the test sets. From this analysis it emerges that in case of the α brain waves the three sensors that
show the highest performances are P7, P8 and O1. These sensors are located in the occipital region of
the brain which is actually the region where alpha waves are more localized. For what concerns β and γ
waves the electrodes that better perform in our classification are AF3 (β) and AF4 together with F8 and
F3. All these electrodes are located in the pre-frontal cortex which is related to control of attention [26]
add to top-down mechanisms.

5.3 Best Waves and Electrodes Combination

Finally we have considered a classifier Cfinal(7) where we have adopted as training data the EEG signals
collected from observer 7, which was identified from the first analysis as the best predictor. For what
concerns the feature vector, we have here combined the best electrodes found for each brain wave. In
Table 4 the performance of this classifier with respect to data collected from all the subjects of the second
experimental session is reported. Comparing this Table with Table 3 we observe an overall improvements
in the performance measures.

6 Conclusions

Our preliminary investigation on EEG data reveals that a proper combination of electrodes and brain
waves permits a better classification of auditory saliency, than each of them considered singularly. Even
if the classification performance achieved is still not adequate, we are confident that there is room for
a significant improvement. First of all a proper regularization of the classification output that takes
into account temporal correlation should be applied. Moreover, other features can be considered: for
instance Wavelet-Based features, adopted by Murugappan et al. in the field of emotion discrimination
from EEG data [27], or fractal dimension feature in combination with statistical features [28], or cepstral
coefficient features as adopted by [29]. Furthermore we plan to test several different classifiers, such as
Bayes classifiers, or Support Vector Machine. Finally, as the performance obtained is significantly different
with respect to subjects used for training and testing, we plan to train a classifier on data from a group
of subjects to predict the mental state of the other individuals.
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