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Abstract. Least squares support vector machine (LS-SVM) has a large amount of computation and 
sparsity. Aiming at this problem, a fast sparse approximation least squares support vector machine 
(FSALS-SVM) algorithm is proposed. The algorithm uses an iterative algorithm of complexity to ac-
celerate the calculation of the inverse of the kernel matrix and the sparse processing of the support 
vector machine through the pruning algorithm, thus reducing the computational complexity. The 
classification and recognition experiments of one dimension range profile of one dimensional radar 
target show that the FSALS-SVM is more sparsely under the same generalization performance.  
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1   Introduction 

The kernel machine learning method is based on statistical learning theory and kernel method. It is a 
statistical machine learning method based on support vector machine. Because the structural risk criteria 
in the statistical learning theory are adopted in the nuclear machine, the nuclear machine will not fall into 
the over fitting, so it has good generalization ability. It does not require a lot of training samples. To a 
certain extent, it solves the problem of over-fitting and the extension ability of the neural network. At the 
same time, because of the adoption of the nuclear method, the nonlinear nuclear machine is realized, which 
makes the nuclear machine have a larger hypothesis space, can solve the more complex problems, and does 
not need too large calculation. This also avoids the dimension disaster problem in the neural network to 
some extent.  

Support Vector Machine (SVM) is a new pattern recognition method developed on the basis of statis-
tical learning theory. It is based on the VC dimension theory of statistical learning theory and the principle 
of structural risk minimization. It can avoid the local optimal solution, overcome the "dimension disaster", 
and show many unique advantages in solving the problem of small sample, nonlinear and high dimensional 
pattern recognition.  

The SVM algorithm transforms the actual problem into the high dimensional feature space through 
nonlinear transformation, constructs a linear discriminant function in the high dimensional space to realize 
the nonlinear discriminant function in the original space, and solves the dimension problem skillfully. The 
complexity of the algorithm is independent of the dimension of the sample. SVM has the characteristics of 
simple structure, good generalization ability, unique solution, suitable for processing high dimensional data, 
computational complexity and dimensionality of training samples. Therefore, it is an effective method for 
the model classification problem of high dimension and small sample. For the recognition of radar target 
high resolution range image (HRRP), SVM is undoubtedly an effective means. SVM can obtain higher 
correct recognition rate and better generalization performance.  
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2   Support Vector Machine (SVM) 

2.1  SVM Principle 

The support vector machine implements the following idea: the input vector x is mapped to a high di-
mensional feature space Z by selecting a good nonlinear mapping in advance, and the optimal hyperplane 
is constructed in this space. The so-called optimal classification surface is that the classification surface can 
not only make two kinds of sample points without fault, but also make the two categories of the largest gap. 
As shown in the optimal hyperplane. (As shown by the formula 1), the hollow circle and the solid circle in 
the graph represent two classes of training samples respectively. H is the classification line that separates 
the two classes correctly. H1 and H2 are the straight lines passing through the nearest samples from the 
classification lines and parallel to the classification lines, and the distance between them is called the 
classification interval (margin). The former is to ensure the minimum empirical risk, and the latter is 
actually to minimize the confidence range and minimize the actual risk, which is a concrete embodiment of 
the principle of structural risk minimization. Generalized to the higher dimension, the optimal classifica-
tion line becomes the optimal hyperplane.  

The general form of the linear discriminant function in the D dimensional space is that the classification 
surface equation is the normalization of the discriminant function, which makes all the samples of the two 
classes satisfied, at this time, from the nearest sample of the classification surface, and that the classifi-
cation is correctly classified in the face of all the samples, which is required to satisfy it. 

( ) 1 0, 1,2, ,T
i iy w x b i n+ − ≥ = � (1) 

In the formula (1), the samples that equate the numbers are called Support Vectors. 
The classification gap (Margin) interval between two types of samples is: 

Figure 1. Optimal Hyperplane 

arg 2 /M in w= (2) 
Therefore, the optimal classification surface problem can be expressed as the following constraint op-

timization problem, that is, under the constraint of condition formula (1), obtain the minimum value for 
the function 
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To this end, you can define the following Lagrange functions: 
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Among them, for the Lagrange coefficient, our problem is to find the minimum value of Lagrange function 
for W and B. The formula (4) pairs W, B, and partial differential respectively, and makes them equal to 0. 
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The above three expressions plus the original constraint condition can transform the original problem 
into the following two problems:  
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This is a quadratic function problem with inequality constraints, and there exists a unique optimal 
solution. If it is the optimal solution, then 
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The sample which is not zero is called the support vector. Therefore, the weight vector of the optimal 
classification surface is a linear combination of support vectors.  

b* can be solved by constraint conditions, and the optimal classification function obtained is:  
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SGN () is a symbolic function.  
When a hyperplane cannot be completely separated from the two points, the relaxation variable can be 

introduced to satisfy the hyperplane.  
 ( ) 1T

i i iy w x b ξ+ ≥ −   (11) 
When the value is between 0 and 1, the sample point Xi can still be correctly classified, and when the value 
is greater than 1, the sample point Xi is misclassified. To this end, the following objective functions are 
introduced:  
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C is a normal number, which is called a penalty factor. At this point, SVM can be realized by two times 
programming (dual programming).  
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2.2  Kernel Function of Support Vector Machine (SVM)  

If the simple hyperplane in the original space cannot be satisfactorily classified, the complex hypersurface 
must be used as the interface.  

First, the input space is transformed into a high dimensional space by nonlinear transformation, and 
then the optimal linear classification surface is obtained in the new space, which is realized by defining an 
appropriate kernel function (inner product function).  
 ( , ) ( ) ( )i j i jK x x x x= Φ ⋅ Φ   (14) 

Instead of the dot product in the optimal classification plane, the kernel function is equivalent to trans-
forming the original feature space into a new feature space. 
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The corresponding discriminant function is as follows: 
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It is a support vector, as an unknown vector, formula (16) is SVM, which is similar to a neural network 
in the form of a classification function, and its output is a linear combination of a number of middle layer 
nodes, and each middle layer node corresponds to the inner product of the input sample and a support 
vector, and therefore is also called the support vector network.  

Since the final discriminant function actually contains only the linear combination of the inner product 
of the unknown vector and the support vector, the computational complexity of the recognition depends on 
the number of the support vectors.  

At present, there are mainly three types of kernel functions, which are related to the existing algorithms.  
(1) polynomial form of kernel function, that is,  
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corresponding to SVM is a Q order polynomial classifier.  
(2) radial basis function kernel function 
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corresponding to SVM is a radial basis function classifier.  
(3) S - shaped kernel function, such as  
 ( ), tanh( ( ) )T

i iK x x v x x c= +   (19) 
then SVM is a two layer perceptron neural network, but not only the weight value of the network, but also 
the number of hidden layer nodes of the network is also automatically determined by the algorithm.  

3   Least Squares Support Vector Machine (LS_SVM)  

3.1  LS_SVM Algorithm Derivation  

For a given set of training samples and corresponding class tag sets, the training sample X is mapped from 
the original input space to a high dimensional feature space F, that is, through a nonlinear mapping. At 
this time, the input training sample is transformed from the original X to the sample set in the D di-
mension space, and the high dimensional sample set is obtained after the nonlinear mapping to the high 
dimensional feature space F. The goal of the least squares support vector machine model is to construct a 
classifier in the following form:  

 sgn( ( ) )Ty w x bϕ= +   (20) 

So that the sample x can be correctly classified by function g (x), where SGN () is a sign function. Using 
LS-SVM algorithm to find the optimal classification hyperplane in F of high-dimensional feature space is to 
solve the following optimization problems:  
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It actually plays the role of controlling the degree of punishment for the wrong sample. If the training 
data contains large noise, it should be smaller. From the point of view of statistical learning theory, the 
first item of formula (21) can be regarded as the confidence range, which affects the complexity of the 
learning machine; the second item can be considered as an empirical risk.  
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In order to obtain the minimum value of the objective function (formula 21), we now construct the 
Lagrange function L as follows:  
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This is the Lagrange multiplier coefficient, also known as the support value, because it is equality 
constraint, so its value can be positive and negative. In order to find the minimum value of the Lagrange 
function L, we present the following optimization conditions for the function L for the variable, the sum, 
and the partial derivative, and the partial derivative equal to 0.  
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The formula (23) and (25) substitution (26) eliminate and obtain: 
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As a result, the type (27) can be extended into a set of linear equations composed of L equations, and 
formula (27) is only the I equation in the linear equation group. Taking the Lagrange multiplier vector and 
parameters as variables, we can write the matrix (24) and (27) into the following matrix form:  
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Here, I will focus on the composition of matrix A:  

 1
= Ω+A I

r
  (29) 

I is the unit matrix of order L. In order to describe it conveniently, we can call matrix A as kernel cor-
relation matrix. The solution of the equation group (28) can be obtained:  
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Generally speaking, it is a 1.5 positive definite symmetric matrix, and its inverse is very likely to not 

exist, but if each element is added to the diagonal, the inverse of the kernel correlation matrix A is in the 
general case, which is also the bright point of the least squares support vector machine. 
Finally, the classification function of least squares support vector machines can be obtained:  
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3.2  The Selection Method of Parameters 

One of the advantages of SVM is that its parameters are very few, including only the selection of kernel 
function parameters and penalty factor gamma. The difference of kernel function mainly affects the 
complexity of the distribution of sample data in high dimensional feature space, and the role of penalty 
factor gamma is to adjust the confidence range of the learning machine and the proportion of empirical risk 
in the definite feature space. But how to take the appropriate parameters of the kernel function and the 
penalty factor - gamma, there is no definite guidance on the theory at present, which is usually determined 
by the trial and error method. This is a problem that needs further study.  
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At present, the commonly used parameter selection method is mainly the cross validation method (cross 
validation) in data mining theory. Cross validation is a model evaluation method, which can predict 
unknown data through learning. The fitting accuracy reflects the accuracy of the model to the historical 
statistical data fitting, reflecting the suitability of the past change rules, and the prediction accuracy 
reflects the prediction ability of the model to the future. A model has high fitting accuracy, and it has high 
prediction accuracy. In order to solve this problem, cross examination method is proposed. Cross exam-
ination is to divide training samples into M parts, one of which is retained as part of the training, and the 
remaining M-1 as the training part. The training part is trained to estimate the probability PR, and the 
remaining part is used as a test set to test the accuracy of the model.  
3.2.1 Common Cross Test Method 

The common cross test methods include:  
(1) K-fold cross validation. The training samples are randomly divided into K disjoint subsets, and the 
sizes of each fold are approximately equal. K-1 training subsets are used to establish a set of parameters for 
a given set of parameters, and the performance of the parameters is evaluated using the remaining MSE of 
the last subset. According to the above process, repeat K times, and estimate the expected generalization 
error according to the average MSE value obtained after K iterations, and finally select a set of optimal 
parameters. The advantages of this approach are concerned with how data are divided, and each data 
point can only participate in one test, and the resulting prediction variance increases with the decrease of 
K. The disadvantage of this method is the large amount of computation and training.  
(2) leave-one-out cross validation, which is actually a cross test, that is, a set of data with a K sample, each 
taking K-1 for training to predict the remaining samples. This method is deterministic and does not need 
to use random functions as a cross test to select the division of a training set. However, this method is too 
costly to calculate, and it is not stratified, that is, the ratio of the training set to the test set is different, 
and the result is sometimes very high.  
(3) the holdout cross validation dichotomy cross test. It is the simplest type of cross validation, which is 
divided into two independent subsets, one part as a training set, and the other as a test set to estimate the 
prediction accuracy of the model. The cross test method requires more samples, and the estimation ac-
curacy is often related to the data grouping, and the cross test method is not completely feasible in 
practical application.  
3.2.2 Parameter Determination Method Based on Grid Search  

The advantage of grid search method is that it can simultaneously search kernel parameters and penalty 
factor gamma two parameters. The specific steps are as follows: first, the parameters of the kernel function 
and the penalty factor gamma are selected, and then the search step is set. In this way, a two-dimensional 
network is formed on the kernel function parameters and the penalty factor gamma coordinate system, 
which corresponds to each set of values on the grid and calculates the prediction accuracy by the contour 
line, and the contour map is obtained. Accordingly, the contour map is obtained, and the best one is 
determined. Parameters. If the accuracy rate can not meet the requirement, a search area is selected based 
on the existing contour map, and the search step is reduced to fine search.  
3.2.3 Parameter Determination Based on Evolutionary Algorithm  

Evolutionary algorithm is a series of search techniques based on the basic computing model of natural 
evolution process. It is widely used in many fields, such as function optimization recognition, machine 
learning, neural network training, intelligent control and so on. Evolutionary algorithm (evolutionary 
algorithm) is a mature global optimization method with high robustness and wide applicability. It has the 
characteristics of self-organizing and self-adaptive, which can not be restricted by the nature of the 
problem. Commonly used methods are genetic algorithm (GA) or particle swarm optimization (PSO).  

4   Improved Fast Sparse Least Squares Support Vector Machine  

4.1  The Sparsity of Least Squares Support Vector Machines 

The traditional SVM classifier has sparsity, that is, the classification hyperplane is only related to the less 
support vectors in the sample point. Even if all the non support vectors are removed, it does not affect the 
solution. This sparse feature can reduce computation greatly in the two learning process, and has im-
portant algorithm advantages.  
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The difference between the LS_SVM and the standard SVM method is that the least squares support 
vector machine modifies the empirical risk in the objective function into the sum of the squares of the 
classification error. Thus, the two planning problems in the standard support vector machine are skillfully 
converted to a linear formula, which makes it difficult to solve the optimal classification plane. The degree 
is greatly reduced. Another difference is that LS_SVM uses equality constraints to replace inequality 
constraints in standard support vector machines. However, the Lagrange multiplier for each sample of least 
squares support vector machine is rarely 0. In this way, all the sample points should be recalculated for the 
new sample points, so all training samples will always become support vectors. Therefore, compared with 
the general SVM method, the solution of LS_SVM does not have sparsity [1].  

At present, sparse research of training samples is a hot and difficult point in the research field of least 
squares support vector machines. In solving the sparsity of least squares support vector machines, it is 
proposed to get sparsity by cutting a small number of smaller samples each time; Kruif and Vries are 
pruning methods that are removed by the samples with smaller approximation errors introduced after the 
deletion; and a pruning party based on SMO is proposed. Jiao and Bo et al. put forward a fast thinning 
method, which iteratively constructs a decision function by adding a centralization to the base function of 
the training sample, until the epsilon insensitive criterion [1] is satisfied.  

In order to overcome the two shortcomings of least squares support vector machine, a fast sparse least 
squares support vector machine is presented.  

4.2  Iterative Inversion of Kernel Matrix  

It is the most time-consuming to calculate the inverse of the kernel matrix in the LS_SVM algorithm. If 
the inverse of the kernel matrix is calculated from zero at every iteration step, the computational com-
plexity is 3( )O n , which will result in a very high computing complexity. Therefore, an iterative algorithm 
with complexity 2( )O n is introduced to speed up the computation of the inverse of the kernel matrix. To 
facilitate the description, we will rewrite the formula (22) as follows:  
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And, 1 is a unit matrix.  
If we choose the first S basis function in the (n+1) generation, we have:  
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According to the inverse matrix lemma below, the matrix 1nR +  can be obtained at the cost of compu-
tation 2( )O n .  
Lemma 1: gives a reversible matrix A and matrix U, V, D, equality is established.  
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By substituting formula (36) in formula (35) to solve the inverse matrix, we can get the following update 
formula: 
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Suppose that the A and B have been calculated using the equation 
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Formulas (37) and (38) show that we can avoid direct computation of the inverse matrix, R , α  and b  
are updated effectively, and the computational complexity is only 2( )O n . 

4.3  Pruning Algorithm Sparsity  

The classification function of standard least squares support vector machine (the optimal classification 
surface function) is: 
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By observing the optimal classification surface function above, we can find that the support value iα  has 
the greatest influence on the classification plane. The smaller the absolute value of the support value iα , 
the smaller the contribution to the taxonomy, that is, the support value of the smaller absolute value has 
little effect on the classification. In this case, then the training samples of the support values of the smaller 
absolute values can be deleted. At present, the common least squares support vector machine sparsity 
algorithm is generally based on the above thought. First, the training sample of a certain scale is selected, 
and then a certain method is adopted to delete the training samples with relatively small absolute value of 
the support value in the learning process, so as to achieve the purpose of sparsity.  

In this paper, the pruning algorithm is used to sparse support vector machines. The basic idea of the 
pruning algorithm is: After the iα  descending order is arranged, the map of support vector value is 
obtained. As the size of iα  reflects the relative importance of each training sample in the composition of 
the solution vector, the training samples with smaller iα  can be deleted. Deleting a training sample is 
equivalent to zeroing its corresponding support value, that is 0iα = . In this way, a better sparsity can be 
obtained by continuously removing training samples from training samples which have less influence on 
decision or regression function and training the newly acquired training set.  

The pruning algorithm is similar to the algorithm used in neural network to delete hidden nodes, but 
there is no need to solve the inverse matrix of the Hessian matrix. It only needs to zero the support value 
of the smaller absolute value in the resolution vector, so the algorithm is simple to execute. Combining the 
iterative inversion of kernel functions, the fast sparse LS-SVM algorithm proposed in this chapter can be 
summarized as follows:  
Step 1. Let 0,n P= = ∅ ;  

Step 2. select the support vector: 
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If n=0, using the classifier obtained in the previous step to classify the samples which are not selected to 
get f (x), then calculate the value of the function ( ) ( )g x yf x= , get the label V of the minimum value, 
update the set { }1n np p v+ = + , and then calculate 1 1 1 !, , ,n n n n

p sR bα α+ + + +  according to the formula (35) and 
(39), and finally update the n=n+1;  
Step 3: In order to better control the scale and improve the performance, performs the pruning operation 
when the two conditions of the incremental process iterates the number of L times and the number of np  

reaches a certain number .That is, delete the sample u, update { }1n np p u− = −  and calculate the sample
1 1 1 1, , ,n n n n

p sR bα α− − − −  with the minimum value.  

Step 4: go to Step 2 until it satisfies the stop iteration condition ( ( )( )min g x η≥ ).  

Training samples are trained by LS-SVM algorithm 

Delete training samples with smaller a values

Arrange a in descending order 

A sharp decline in performance indicators?
no

Output recognition results 
 

Figure 2. Flowchart of sparsely LS-SVM algorithm 

5   Application of Fast Sparse LS-SVM in Radar Target Recognition  

5.1  Simulation Data  

According to the above multiple scattering points model, four targets are chosen as test targets. "1" shaped 
targets, "V" shaped targets, "±" shaped targets and "÷" shaped targets. The number of scatter points for "1" 
targets is 5, and the scatter points of "V", "±" and "÷" are 9. In the experiment, the radar transmitting 
signal bandwidth is 150MHZ, and the distance resolution is 1m.  

According to the formula: 

 
T

1 2
[| ( ) |, | ( ) |, ..., | ( ) |, ]

n
x m x m x m=

n
x (m)   (41) 

the high resolution range images of four kinds of simulation target "Hi", "V", "dry" and "small" in the range 
of 0o to 180o are calculated. The odd attitude angle samples are used as the learning samples, and the dual 
attitude angle samples are taken as the test samples, and the training sample set M and the test sample set 
X are obtained.  

5.2  Simulation Analysis  

5.2.1 Recognition Experiment Based on SVM  
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The experimental data are the distance image samples after the feature extraction of center distance and 
the feature extraction of invariant KPCA, and the SVM algorithm is used for the classification algorithm. 
In the experiment, the Gauss kernel function is used for the SVM, and the selection of the kernel function 
parameters and the penalty factor of the two planning has influence on the experimental results. Here, the 
cross validation algorithm is used to estimate the joint precision of parameters and each parameter in a 
certain range, so as to determine the best parameters of the actual problems and select the appropriate  
Experiment 1: SVM target recognition method for two target recognition performance based on translation 
invariant KPCA feature extraction in different attitude angles.  

 
Figure 3. Results of the two class target recognition based on SVM 

Table 1. Recognition results of two targets in different attitude angles by SVM method 

target 
correct recognition rate 
0o-30o 0o-60o 0o-90o 

“1”“V” 0.9947 0.9862 0.9815 
“1”“±” 0.9824 0.9751 0.9613 
“1”“÷” 0.9844 0.9712 0.9608 
“V”“±” 0.9721 0.9634 0.9501 
“V”“÷” 0.9708 0.9610 0.9535 
“±”“÷” 0.9611 0.9497 0.9424 

average recognition rate 0.9776 0.9678 0.9583 
 
Experiment 2: SVM target recognition method to identify three targets in different attitude angles. 

Table 2. Recognition results of three targets in different attitude angles by SVM method 

target 
correct recognition rate 
0o-30o 0o-60o 0o-90o 

“1”“V”“±” 0.8624 0.8301 0.8002 
“1” “V”“÷” 0.8714 0.8234 0.7996 
“1”“±”“÷” 0.8586 0.8297 0.8053 
“V”“±”“÷” 0.8283 0.8014 0.7932 

average recognition rate 0.8552 0.8212 0.7996 
 

The noise of samples is 20dB, and the average of 200 experimental results is shown in tab.1 and tab.2. 
The data in the table show that the average recognition rate decreases with the increase of the attitude 
angle range, which is because with the increase of the attitude angle, the greater the difference between the 
target HRRP and the less distinguishable. Tab.1 compared with Tab.2, it is found that the recognition rate 
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of the three class is lower than that of the two class target, which indicates that the three category is more 
difficult to classify.  
5.2.2 Recognition Experiment Based on LS-SVM  

In this experiment, the LS-SVM algorithm is used to classify and identify the one dimensional range 
profiles of four kinds of aircraft targets in the large attitude angle range, and the "One-against-one" multi 
class classification strategy is adopted. In this experiment, the Gauss radial basis kernel function is used in 
the experiment, and the selection of the kernel function parameter and the penalty factor is influenced by 
the selection of the kernel function parameter and the penalty factor gamma. The cross validation (Cross 
Validation) algorithm is selected to estimate the joint accuracy of each parameter in a certain range to 
determine the best parameters of the actual problem, and select the suitable LS-SVM. When the LS-SVM 
model. The LS-SVM algorithm is used to classify the one dimensional range profile of three radar targets. 
Through several experiments, it is found that when 2 0.1,0.5σ  ∈    and 10,20γ  ∈   , the experimental 
results are stable and the difference is not big and the recognition rate is high, so we take 2 0.4σ =  and 

10γ =  in this experiment.  
 
Experiment 3: LS_SVM target recognition method for two target recognition performance based on 
translation invariant KPCA feature extraction in different attitude angles.  

 

Figure 4. Results of two types of target recognition based on standard LS-SVM algorithm 

  

Figure 5. Results of two types of target recognition based on standard LS-SVM algorithm 
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Table 3. Recognition results of two targets in different attitude angles by LS_SVM method 

target 
correct recognition rate 
0o-30o 0o-60o 0o-90o 

“1”“V” 0.9926 0.9914 0.9897 
“1”“±” 0.9905 0.9841 0.9812 
“1”“÷” 0.9863 0.9789 0.9773 
“V”“±” 0.9721 0.9762 0.9602 
“V”“÷” 0.9731 0.9739 0.9611 
“±”“÷” 0.9586 0.9578 0.9482 

average recognition rate 0.9789 0.9771 0.9696 
 
Experiment 4: LS_SVM target recognition method for three target recognition performance based on 
translation invariant KPCA feature extraction in different attitude angles.  

Table 4. Recognition results of three targets in different attitude angles by LS_SVM method 

target 
correct recognition rate 
0o-30o 0o-60o 0o-90o 

“1”“V”“±” 0.8702 0.8648 0.8511 
“1” “V”“÷” 0.8717 0.8613 0.8523 
“1”“±”“÷” 0.8665 0.8542 0.8396 
“V”“±”“÷” 0.8541 0.8519 0.8287 

average recognition rate 0.8656 0.8581 0.8429 
 

Tab.3 and Tab.4 show the average of the 100 experimental results. The data in the table show that the 
average recognition rate decreases with the increase of the attitude angle range, which is because with the 
increase of the attitude angle, the greater the difference between the target HRRP and the less distin-
guishable. At the same time, it can be found that using the LS-SVM algorithm, the three aircraft targets 
in each attitude angle range have a very high recognition rate, which reflects the superior recognition 
performance of the least squares support vector machine in the case of the non separable sample set.  

Comparing the experimental results of SVM algorithm in tab.1 and LS-SVM algorithm in tab.3, it can 
be found that, under the same data, the recognition rate of LS-SVM is higher than that of the SVM 
algorithm, which shows that the LS-SVM algorithm is superior to the SVM algorithm in the recognition of 
radar range profile in the large attitude angle range. Perhaps in some pattern recognition areas, the 
LS-SVM algorithm is indeed better than the SVM algorithm, but this is at the expense of the support 
vector (in the LS-SVM algorithm, almost all training samples become support vectors).  
5.2.3 Experiments Based on Improved LS-SVM Algorithm  

In view of the lack of sparsity of the solution of LS_SVM, a sparse LS-SVM algorithm is given in this 
paper to further improve the recognition effect of LS-SVM algorithm in radar target recognition. In this 
experiment, we use the fast sparse LS-SVM algorithm proposed in this chapter to identify two types and 
three types of targets.  
 
Experiment 5: fast sparse LS-SVM algorithm is used to identify two different targets. The results of the 
experiment are shown in tab.5.  

Table 5. Fast sparse LS_SVM method for two target recognition results 

target Sparse front sample number Sparse post sample number Training time /s Classification accuracy 
“1”“V” 60 20 3 0.8933 
“1”“±” 60 18 2 0.9027 
“1”“÷” 60 19 3 0.8945 
“V”“±” 60 23 4 0.8526 
“V”“÷” 60 26 5 0.8415 
“±”“÷” 60 25 4 0.8639 
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Figure 6. Results of two kinds of target recognition based on fast sparse LS-SVM algorithm 

  
Figure 7. Results of two kinds of target recognition based on fast sparse LS-SVM algorithm 

Experiment 6: fast sparse LS-SVM algorithm is used to identify three different targets. The results of the 
experiment are shown in tab.6.  

Table 6. Fast sparse LS_SVM method for three target recognition results 

target sparse front sample number sparse post sample number training time /s classification accuracy 
“1”“V”“±” 60 30 3 0.8651 
“1” “V”“÷” 60 28 4 0.8429 
“1”“±”“÷” 60 31 4 0.8468 
“V”“±”“÷” 60 33 5 0.8317 

 
Tab.5 and tab.6 are the classification results of the fast sparse LS-SVM algorithm, and it is obvious that 

the number of training samples is greatly reduced after reasonable sparsity with Fig.4 and fig.5. At this 
time, if an unknown sample is classified, it not only reduces the calculation of the kernel function, but also 
reduces the number of summation, and improves the efficiency of recognition. At the same time, using the 
training sample set after sparsity and the Iterative Incremental LS-SVM algorithm of the 4.3 section, it can 
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easily calculate the inverse of the kernel correlation matrix, which not only ensures that the classification 
recognition rate is basically kept the same, but also reduces the iteration number of the Iterative Incre-
mental LS-SVM algorithm and avoids the mass matrix. The inverse problem is beneficial to the imple-
mentation of hardware. Experiments show that the new fast sparse LS-SVM algorithm proposed in this 
chapter has great advantages.  
5.2.4 Comparison of the Three Methods  
Experiment 7: SVM, LS-SVM and fast sparse LS-SVM algorithm for recognition of two kinds of targets.  

Select the two types of "±" "V" to identify the target, use the three classification algorithms involved in 
this chapter: SVM, LS-SVM and fast sparse LS-SVM algorithm, the experimental results are shown in 
tab.7.  

Table 7. Recognition results of two targets by SVM, LS-SVM and fast sparse LS-SVM algorithm. 

algorithm support vector number training time correct recognition rate 
SVM 40 3 0.8643 
LSSVM 60 4 0.9046 
sparse LS-SVM 30 2 0.9021 

 
Observation tab.7 shows that for all values, the classification accuracy of fast sparse LS-SVM algorithm 

is better than LS-SVM approximation than SVM. The support vector number of the fast sparse LS-SVM 
algorithm is 0.5 times that of LS-SVM, and the number of support vectors is obviously smaller than the 
support vector machine SVM, so the training time of the sparse LS-SVM is 0.5 times that of the LS-SVM 
training time. The fast sparse LS-SVM algorithm proposed in this chapter has obvious advantages, so it 
can be concluded that the fast sparse LS-SVM algorithm is the best choice for high resolution distance 
image.  
 
Experiment 8: recognition of three types of recognition methods under different feature extraction methods  

Table 8. Recognition results of three types of recognition methods under different feature extraction methods 

algorithm SVM LS-SVM Fast sparse LS-SVM 
center distance feature extraction 0.8621 0.8764 0.8783 

translation invariant KPCA feature extraction 0.8934 0.9136 0.9162 

 
Figure 8. Results of three types of target recognition based on fast sparse LS-SVM algorithm with the feature ex-
traction of zero shift translation invariant 
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Figure 9. Results of three types of target recognition based on fast sparse LS-SVM algorithm with the feature ex-
traction of center distance 

From the tab.8, we can see that the method of feature extraction has a great influence on the classifi-
cation performance. The recognition rate of the three classifiers in the feature extraction of the center 
distance feature and the translation invariant KPCA is very different. From the data, the result of 
recognition and classification after the translation of the translation invariant KPCA feature is obviously 
better than the result of the center distance feature extraction. From the comparison of classification 
results in Fig.8 and Fig.9, it is obvious that these two methods can affect the classifier performance.  

6   Summary  

In this paper, the principle of support vector machine (SVM) is described in detail. On this basis, the least 
squares support vector machine (LS-SVM) algorithm is introduced. In view of the lack of sparsity of 
LS-SVM training samples, a fast sparse least squares support vector machine (FSALS-SVM) algorithm is 
proposed, followed by SVM, LS-SVM and fast sparse LS-SVM three. The algorithm is applied to the 
recognition of radar HRRP. Through the experiment of classification and recognition of one dimensional 
range image data of radar target, the fast sparse LS-SVM algorithm can make the classifier more sparse on 
the premise of obtaining the same generalization performance.  
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