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Abstract Convolutional Neural Networks (CNNs) have performed very well on image classification
tasks, but CNNs is insensitive to detailed image information and requires a large amount of training
data and time. Capsule Networks(CapsNets) can solve this problem very well, but the Baseline
CapsNet model is very shallow, and the extraction of low-level features is not enough. We propose a
Multi-Scale Capsule Network (Multi-Scale CapsNet), by extracting the low-level features of images
with multi-channel convolution of multiple convolution kernels, so extracted features are more
diverse, then passing from the bottom layer to the upper layer in the form of a "capsule", which
encapsulats the multidimensional features of the image in the form of a vector, thus the features
are saved in the network, rather than being recovered after being lost. In the German Traffic Sign
Recognition Benchmark(GTSRB), we obtained competitive results with the accuracy of 99.4%,
which is better than the human performance of 98.81% and the Multi-Scale Convolutional Neural
Network(MS-CNN) of 97.33%.
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1 Introduction

The development of traffic sign detection and recognition began in the 1970s. Due to the limited
computing power, the algorithm could not be verified experimentally, so related technology developed
slowly. However, with the improvement of computer performance, more and more scholars and major
automobile manufacturers have invested in the research of traffic sign detection and recognition.

1.1 Traditional Traffic Sign Recognition Method

The traditional traffic sign recognition classification method is mainly based on color and shape. These
methods based on color often use a threshold to separate traffic signs from background[1]. Some researchers
use HSI color space instead of RGB and have achieved good performance [2]. A novel color space Eigen
color based on Karhunen-Loeve (KL), is used for traffic sign detection [3]. The main disadvantage of these
color-based methods is that it is difficult to set the value of threshold because the color information is not
invariant in real-world environment with different lightening conditions.

Methods based on shape of the traffic signs, have also been widely used. In [4] a method is proposed
using smoothness and Laplacian filter to detect round signs. In [5] a method designed to detect triangle
signs based on gradient and orientation information is proposed. In [6] a detection algorithm by using
Hough transform is introduced. In order to speed up the detect algorithm, [7][8] use a fast detection
method based on the symmetry on Radial direction of triangle, square, diamond, octagon and round signs.
Most of the methodsabove rely on gradient features, which are really sensitive to noise. Because color
information and shape information are both useful to traffic sign detection, it is natural to combine these
two kinds of features. In [9] images are segmented in HSI color space, and template matching techniques
are then used to find traffic signs.

1.2 Traffic Sign Recognition Method Based on Deep Learning

Recently, Convolutional Neural Network has been adopted in object recognition for its high accuracy [10]
[11] [12] [13]. In [10], a multi-layer convolutional networks is proposed to boost traffic sign recognition,
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using a combination of supervised and unsupervised learning. This model can learn multi stages of
invariant features of image, with each layer containing a filter bank layer, a non-linear transform layer,
and a spatial feature pooling layer. Feeding the responses of both two convolutional layers to the classifier
can achieve an accuracy of recognition as high as 97.33%.

In December 2017, HINTON GE proposed the network structure of CapsNets[14], and the training
precision on multiMINIST was 99.23%, achieving 79% accuracy on the affinist test set, far exceeding
66% of CNN, while CapsNets consume less time, and are the most accurate network at that moment.
Usually, traffic signs on the road can be tilted, rotated, blurred, and so on. CNN has a poor learning
effect on spatial location, so when identifying such traffic signs, it will lose detailed information such as
position and posture. CapsNets[15][16][17] handles traffic sign images more than CNN in spatial position.
The entire learning process of capsnets is transmitted from the bottom layer to the upper layer in the
form of "capsules", which encapsulates multi-dimensional features, thus reducing the number of training
samples while retaining the characteristics of traffic signs with less probability of occurrence. However, the
structure of Baseline CapsNet is very shallow, and the extraction of low-level features is not enough. So,
we proposes an improved capsule network-Multi-Scale CapsNet is applied to the traffic sign recognition,
the results indicate that the recognition effect is better than the Baseline CapsNet and MS-CNN.

2 Capsule

2.1 Capsule

The original neural network relied on the use of a single scalar output to summarize the repetitive feature
detector activity in a local pool. The CNN processed the single image after displacement, rotation, etc., as
two image. Neural networks, however, should use multidimensional features, or "capsules", that perform
some very complex internal calculations on their inputs and then encapsulate the results into a vector
containing informative output. Each capsule learns to identify a visual entity implicitly defined within a
local condition and effective deformation range, and outputs a probability and a set of entity parameters
that exist within a finite range. The set of entity parameters will include lighting conditions relative to
the visual entity, Accurate pose and deformation information. When the capsule is working properly,
the probability of the presence of the visual entity is locally invariant, that is, the probability does not
change when the entity moves over the apparent manifold within a limited range of capsule coverage.
The entity parameter is " equivariant ". As the observation condition changes, the instance parameter
will change correspondingly when the entity moves on the appearance manifold, because the instance
parameter represents the internal coordinate of the entity on the appearance manifold, as shown in Fig.1.

Suppose that a capsule detects the traffic sign features in the image and outputs a three-dimensional
vector of the fixed length. Then the capsule starts moving the traffic sign picture. At the same time, the
vector is spatially rotated, indicating that the state of the detected traffic sign has changed, but its length
will remain fixed because the capsule is still convinced that it detected the traffic sign. The neural activity
will change as the object moves through the image, but the probability of detection remains constant,
which is the invariance pursued by CapsNets, rather than the invariance based on maximum pooling
provided by CNN.

Ut|i = Wit · ui (1)

where Ut|i indicates the high-level features of the underlying feature, Wit is the spatial relationship
between low-level features and high-level features, ui indicates low-level features.

2.2 Squash Function

The commonly used activation functions of CNN include ReLU, sigmoid, etc., which are used to compress
the linearly superimposed values between 0 1 or -1 1. In CapsNets, because the vector is transported in
the front layer network, the "capsule" needs to be processed in the direction of the activation function.
The activation function of CapsNets is named Squash, and the expression is as shown in equation(2).

vt = ||st||
1 + ||st||2

· st

||st||
(2)
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Figure 1. The transfer of Capsule from the bottom to the top.

where vt is the vector output of capsule t and st is its total.
The effect of this function is mainly to make the vt length not exceeding 1, and make the directions

of vt and st coincide. The first term of the formula is the compression function. When st is large, the
first term approaches 1. If st is small, the first term is equal to 0; the second term of the formula is the
unitized vector st, so the second The item length is 1. In this way, the length of the output vector vt is
between 0 and 1, so this length can be interpreted as the probability that the VN has a given V N feature.

2.3 Dynamic Routing
The dot product of the input and output of the capsule measures the similarity between the input and
output, and then updates the routing factor. The optimal number of iterations in practice is one. The
steps of dynamic routing are:

(1) Capturing the input images and outputting Ut|i, routing iteration times r ;
(2) The definition bit is the probability that the l layer V Ni connects to the next layer V Nt, and the

initial value is 0;
(3) Loop execution steps (4) to (7) r times;
(4) For V Ni of the l layer, use the softmax activation function to convert bit to probability cit;
(5) For l + 1 layer V Nt, weighted sum st;
(6) For V Nt of the l + 1 layer, use the activation function to activate st to get vt;
(7) Update bit according to the relationship between Ut|i and vt.
The dot product of Ut|i and vt is used to update bit. When the two items are similar, the dot product

is large, bit becomes larger, and the probability that the lower layer V Ni is connected to the upper layer
V Nt becomes larger; on the contrary, when the difference between the them is large, the dot product is
small, bit becomes smaller, and the probability that the lower layer V Ni is connected to the upper layer
V Nt becomes smaller.

2.4 Loss Function
The loss function of CapsNets is similar to the loss function of SVM, as shown in equation (3):

Lc = Tcmax(0,m+ − ||vc||)2

+ λ(1− Tc)max(0, ||vc|| −m−)2 (3)

Equation (3) also represents maximizing the distance from the positive and negative samples to the
hyperplane. Where, vc is output DigitCap. Tc =1 represents the correct DigitCap, Tc =0 represents the
incorrect DigitCap. Here are two calibration points m+=0.9 and m− =0.1, and the loss expects the
positive sample m+ to be predicted at 0.9. If it exceeds 0.9, there is no need to continue to improve; the
negative sample m− is predicted to be 0.1, and if it is less than 0.1, there is no need to continue to fall.
The value of λ is fixed at 0.5 and is used for numerical stability during training to prevent excessive loss
at the beginning, resulting in shrinkage of all output values. Both terms in the formula have a square
because the loss function has an L2 norm and the total loss is the sum of all class losses.
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3 Architecture

3.1 Baseline CapsNet

Baseline CapsNet is a very shallow network with 2 convolutional layers and 1 fully connected layer. CNN
performs very well on extracting low-level features. Conversely, CapsNets is used to represent an "instance"
of an object, so it is more suitable for characterizing advanced instances. Therefore, at the bottom of
CapsNets, the convolutional layer is added to extract the underlying feature.

As shown in Figure.2, from the low-level feature to the Primary Capsule, the dimension of the second
convolutional layer is 6 × 6 × 8 × 32, and 8 convolution operations with 32 filters of 9 × 9 size of 2 strides.
In the CNN, those layers of the dimension 6 × 6 × 1 × 32 have 6 × 6 × 32 elements, and each element is
a scalar. In the Capsule, those layers of the dimension 6 × 6 × 8 × 32 have 6 × 6 × 32 elements, with
each element being a 1 × 8 vector, mainly storing the vector of the level features.

From Primary Capsule to Digit Capsule, Primary Caps and Digit Caps are fully connected, but
instead of the traditional CNN of scalar and scalar multiplication, this fully connected layer is a vector
connected to a vector.

Digit Capsule to the final output, its length indicates the probability of the content of its representation,
so when doing classification, we take the L2 norm of the output vector. CapsNets are different from the
previous neural network, whose the output probability sum is 1. Because CapsNets has the ability to
recognize multiple objects simultaneously.

Figure 2. Baseline CapsNet structure.

3.2 Multi-Scale CapsNet

The structure of the Baseline CapsNet is very shallow, and only a convolution layer is used to extract
low-level features, so the extraction of basic feature information is not enough. The Multi-Scale[18]
CapsNet uses the Multi-channel convolution layer[19] to replace the single convolution layer of the
Baseline CapsNet. The convolution of each channel is consisted of various convolution kernels, which
include these sizes of 3 × 3, 5 × 5, 7 × 7, 9 × 9, then concating the outputs of the three channels as the
input to the next layer.

As shown in Figure.3, there are three convolution channels in front of the Primary Capsule layer. The
first channel uses the combination of 3 × 3 and 7 × 7 convolution kernels. Because small convolution
kernels can reduce the network parameters and keep the accuracy, while large convolution kernels can
expand the receptive field and obtain more information. The second channel uses the original 9 × 9
convolution kernel to maintain a large receptive field. The last channel uses the combination of 3 × 3 and
5 × 5 convolution kernels to replace the 7 × 7 convolution kernel of the first channel. The main purpose
is to improve the depth of the network under the condition of ensuring the same perception field, and to
improve the effect of the neural network in some extent. The output of the three channels is 20 × 20
feature maps, and the number of the feature maps by each channel is 128. Finally, the concating function
is used to concating the output of the three channels in the last dimension, so that the feature map is
richer and can express the basic features of the image better. After the Primary Capsule layer, capsules
are used for route iterations from low-level features to advanced features.
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Figure 3. Multi-Scale CapsNet structure.

4 Experiments

4.1 Data Set

The data set used in this experiment is the traffic sign dataset provided by the GTSRB competition,
which is divided into training set and test set. The training sets have 39210 inages and the test sets
consist of 12569 images. There are a total of 43 categories in the images, and the images in each category
are processed into a ppm format image by cropping, contrast, and brightness. During the experiment, the
images needs to be uniformly cut into 28 × 28 size, and some images are shown in Figure.4.

Figure 4. Part of the 28 × 28 traffic sign images.

4.2 Experimental Result

This paper uses the Tensorflow open source framework to design and implement a capsule network. The
entire experiment was conducted on a NVIDIA 1080Ti for 50 epochs of Baseline CapsNet and Multi-Scale
CapsNet. Using the tensorboard visualization tool gets the total loss value and the train acc value of the
two model as shown in Figure.5 and Figure.6.

From Figure.5, we can conclude that the loss trends of the two models are roughly the same, but
eventually converge to different values. In (a), loss eventually converges to 0.00075, while in (b), it
converges to 0.00062. From Figure.6, training accuracy also maintains a consistent trend, and eventually
gradually approaching 100%. The curve in (a) does not converges as fast as that in (b), the former reaches
100% after 23k steps, while the latter reaches 100% after about 10k steps, then slightly shakes up and
down, and finally approaches 100%.
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(a) (b)

Figure 5. Loss of Base CapsNet(a) and Multi-Scale CapsNet(b).

(a) (b)

Figure 6. Train accuracy of Base CapsNet(a) and Multi-Scale CapsNet(b).

Comparing the loss and training accuracy of these two models, it can be concluded that the Multi-Scale
CapsNet has faster training speed and lower loss compared with Baseline CapsNet.

Table 1. Comparison of different methods for traffic sign recognition.

Method Routing iteration Accuracy

MS − CNN [10] 97.33%
Humanperformance 98.81%

BaselineCapsNet 1 97.39%
BaselineCapsNet 3 98.63%

Multi − ScaleCapsNet 1 98.76%
Multi − ScaleCapsNet 3 99.40%

Table 1 lists the test accuracy of MS-CNN, Baseline CapsNet and Multi-Scale CapsNet under the
same data set, and the comparison of the accuracy of the two capsule models under different routing
iterations. In particular, it is better to use 3 routing iteration in our experiment.

By comparing the Capsule model and MS-CNN model, it can be concluded that the CapsNets is better
than the MS-CNN in the recognition of the GTSRB dataset. However, by comparing the two capsule
models, it can be concluded that the performance of Multi-Scale CapsNet proposed by us outperforms
Baseline CapsNet.

5 Conclusion

Experiments have confirmed that Multi-Scale CapsNet, which use a multi-channel convolution technique
with a small convolution kernel combination, improves the training speed. At the same time, the multi-
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channel convolution is used to fully extract the low-level features of the image, which improves the
accuracy of routing iteration between low-level features and advanced features, thereby increasing the
recognition accuracy. In the follow-up work, we will also apply the model to more image classification
tasks, and continue to study and optimize the performance of the model.
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