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Abstract The purpose of this paper is to study about the set of shadowable points of non-
autonomous dynamical systems (X, {fn}n∈Z) where X is a metric space and fn is a homeomorphism
for all n ∈ Z. In particular, we would like to show that X is totally disconnected for every shadow-
able and almost periodic points with a standard condition. Moreover, if {fn}n∈Z is equi-continuous
then we have converse of the previous property.
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1 Introduction and Preliminaries

Shadowing property has been the subject of numerous studies in the qualitative theory of dynamical
systems (see [1], [2]). In 2000, Yuan, Yorke defined the concept of absolutely non-shadowable points
in [3], it splits the pseudo-orbit tracing property into individual shadowings. From their ideal, recently,
Morales (2016) introduced the notion of shadowable points by individualizing the shadowing property
into pointwise shadowings. A shadowable point of a continuous map is defined to be a point such that
the shadowing lemma holds for pseudo-orbits beginning at the point. After that, Kawaguchi extends
the study on shadowable points recently introduced by Morales in relation to chaotic or non-chaotic
properties [4]. About the non-autonomous case, Duarte and Klein give the shadowing property for non-
autonomous systems which satisfy several conditions of the maps fn and pseudo-orbits in Avalanche
principle proof [5]. In this paper, some new concepts are introduced for non-autonomous discrete systems,
including shadowable points, totally disconnected property of X. Then, we concern sevaral important
properties of them. In particular, we show that X is totally disconnected for every shadowable and
almost periodic points with a standard condition. If {fn}n∈Z is equi-continuous then we have converse
of previous property.

Now we introduce some basic notations for non-autonomous dynamical systems. Throughout this
paper, by a non-autonomous discrete dynamical system, we mean a pair (X, {fn}n∈Z) with X is metric
space and {fn}n∈Z ⊂ Hom(X) where Hom(X) the set of homeomorphisms from X to X. One denote
Orb(p, m) = {fn

m(p) : ∀n ∈ Z} is the orbit which is through p at the time m ∈ Z, where

fn
m :=


fn−1 ◦ · · · ◦ fm, if n > m
f−1

n ◦ · · · ◦ f−1
m−1, if n < m

id, if n = m.

A sequence {xn}n∈Z ⊂ X is called be a δ−pseudo-orbit if d(fn(xn), xn+1) 6 δ. The next definitions is
extend concepts of shadowable points (see [6], [7], [8]). A point p ∈ X is shadowable at the time i ∈ Z if
for every ε > 0 there is δ > 0, which is depend on i, ε and p, such that every δ−pseudo-orbits {xn}n∈Z
with xi = p is ε−shadowed (i.e. there is y ∈ X such that d(yn, xn) 6 ε where yn = fn

i (y)). Moreover,
we say that a point p ∈ X is two-sided limit shadowable at the time i ∈ Z if lim

n→±∞
d(fn

i (xn), xn+1) = 0,
implies that there is x ∈ X such that lim

n→±∞
d(fn

i (y), xn) = 0. The set of shadowable points (resp. two-
sided limit shadowable) of (X, {fn}n∈Z) at the time i is denoted by S(i, {fn}n∈Z) (resp. LS(i, {fn}n∈Z)).
The set

S({fn}n∈Z) =
∪
i∈Z

S(i, {fn}n∈Z)

(
resp. LS({fn}n∈Z) =

∪
i∈Z

LS(i, {fn}n∈Z)

)
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is called the set of shadowable points.

Definition 1.1. Let the dynamical systems (X, {fn}n∈Z) where fn : X → X is homeomorphism for all
n ∈ Z. For Y ⊂ X, we now define the omega-limit set

ω(Y, {fn}n∈Z) := {q ∈ X : lim
k→+∞

fnk
i (p) = q for some sequence nk → +∞ and for some p ∈ Y }.

In the invertible case one also define the alpha-limit set

α(Y, {fn}n∈Z) := {q ∈ X : lim
k→+∞

fnk
i (p) = q for some sequence nk → −∞ and for some p ∈ Y }.

Following [9] we say that p ∈ X is a point with converging semiorbits if both α(p, {fn}n∈Z) and ω(p, {fn}n∈Z)
reduce to singleton. Denote by A({fn}n∈Z) the set of points with converging semiorbits and C({fn}n∈Z)
the set of points p in A({fn}n∈Z) with α(p, {fn}n∈Z) = ω(p, {fn}n∈Z) = {p}. If fn = f for all n ∈ Z
then we denote {fn}n∈Z by f for short.

Definition 1.2 (see [10]). The metric space X is totally disconnected at p if the connected component
of X containing p is {p}. We define

Xdeg = {p ∈ X : X is totally disconnected at p}.

Definition 1.3. Assume that {Dn}n∈Z and {En}n∈Z are two sequences of sets in X. The sequence of
maps {fn : Dn → En}n∈Z is said to be equi-continuous in {Dn}n∈Z if for any ε > 0, there exists δ > 0
such that d(fn

i (x), fn
i (y)) < ε for all n, i ∈ Z and for all x, y ∈ Dn with d(x, y) < δ.

Definition 1.4. The point p ∈ X is an almost periodic point if for every neighborhood U of p there
exists some k ∈ N such that

{f i+n
i (p) : n = 1, . . . , k} ∩ U ̸= ∅ and {f i−n

i (p) : n = 1, . . . , k} ∩ U ̸= ∅,

for every i ∈ Z. The set of almost periodic points is denoted by AP({fn}n∈Z).

We denote γ(A) is the set of all connected components of X which intersect A is nonempty. The
following, we shall show the relationships between the Shadowable points and totally disconnected prop-
erty.

Theorem 1.1. Let (X, {fn}n∈Z) with X is a compact metric space and assume that

γ(S({fn}n∈Z) ∩ AP({fn}n∈Z)) ⊂ C({fn}n∈Z). (1)

Then
S({fn}n∈Z) ∩ AP({fn}n∈Z) ⊂ Xdeg.

Theorem 1.2. Let (X, {fn}n∈Z) with X is a compact metric space and assume that {fn}n∈Z is equi-
continuous. Then

Xdeg ⊂ S({fn}n∈Z).

2 Proof of the Main Theorem

Let us denote by B[p, ε] is a ball with centre p ∈ X and radius ε > 0. First, we need the following
definition. Then we have the following proposition.

Proposition 2.1. Let (X, {fn}n∈Z) with X is a compact metric space. For any

p ∈ S(i, {fn}n∈Z) ∩ AP({fn}n∈Z),

then for all ε > 0, there exists the order subsequence {nk}k∈Z ⊂ Z (n0 = 0) such that there exists y ∈ X
satisfies

gk
0 (y) ∈ B[p, ε], ∀k ∈ Z,

where gk = f
i+
∑k

h=0
nh

◦ · · · ◦ f
i+
∑k−1

h=0
nh+1, k ∈ Z∗ and g0 = id.



Proof.. By given, we have p ∈ S(i, {fn}n∈Z) ∩ AP({fn}n∈Z). Therefore, let ε > 0 is arbitrary constant,
there is a δ > 0 such that for all δ−pseudo-orbits {xn}n∈Z with xi = p is ε−shadowable. Due to
p ∈ AP({fn}n∈Z), there is a number k1 > 1 such that {f i+n

i (p) : n = 1, . . . , k1} ∩ U ̸= ∅ where
U = B[p, δ/2]. It is implies that there is a number n1, i < n1 6 i + k1 such that d(fn1

i (p), p) 6 δ/2. By
p ∈ AP({fn}n∈Z) again, there is a number k2 > 1 such that {f i+n1+n

i+n1
(p) : n = 1, . . . , k2} ∩ B[p, δ/2] ̸= ∅.

Then there is also a number n2, 0 < n2 6 k2 such that d(f i+n1+n2
i+n1

(p), p) 6 δ/2. Repeat this procedure,
we obtain that there is a sequence {nk}k∈Z (n0 = 0)such that

d(f i+n1+···+nk+1
i+n1+···+nk

(p), p) 6 δ

2
, ∀k ∈ Z.

We choose the sequence in X, namely {xn}n∈Z which defined by

xn =
{

f i+n1+···+nk+h
i+n1+···+nk

(p), for n = i + n1 + · · · + nk + h and h = 1, 2, . . . , nk+1 − 1
p, for n = i + n1 + · · · + nk.

Then {xn}n∈Z is δ−pseudo-orbit. Indeed,
Case 1. If n = i + n1 + · · · + nk + h with h = 0, 2, . . . , nk+1 − 2. Then

d(fn(xn), xn+1) = d(fi+n1+···+nk+h(f i+n1+···+nk+h
i+n1+···+nk

(p)), f i+n1+···+nk+h+1
i+n1+···+nk

(p)) = 0.

Case 2. If n = i + n1 + · · · + nk+1 − 1. Then we have the following estimation

d(fn(xn), xn+1) = d(fi+n1+···+nk+1−1(f i+n1+···+nk+1−1
i+n1+···+nk

(p)), p)

= d(f i+n1+···+nk+1
i+n1+···+nk

(p), p)
6 δ/2.

It is clear that xi = p. Hence, {xn}n∈Z is δ−pseudo-orbit through p at the time i. Therefore, there is
y ∈ X such that d(fn

i (y), xn) 6 ε for all n ∈ Z. Particularly, when n = i + n1 + · · · + nk we have

d
(
f i+n1+···+nk

i (y), xi+n1+···+nk

)
6 ε, ∀k ∈ Z.

Set gk = f
i+
∑k

h=0
nh

◦ · · · ◦ f
i+
∑k−1

h=0
nh+1 k ∈ Z∗ and g0 = id. From the last inequality we have for every

k ∈ Z then
d(gk

0 (y), p) 6 ε.

This proposition is proved.

Proposition 2.2. Let p ∈ S(i, {fn}n∈Z), then for every ε > 0, there is δ such that for all {xn}n∈Z is
δ−pseudo-orbit with xi ∈ B[p, δ] then {xn}n∈Z is ε−shadowed.

Proof.. Suppose by contradiction that there are ε > 0 and a sequence of 1
k −pseudo-orbit {xk}k∈N+ with

xk
i ∈ B[p, 1

k ] which cannot be 2ε−shadowed for all k ∈ N+. By hypothesis, for this ε, we take δ < ε in
terms of the shadowable point p. As X is compact, fi is uniformly continuous so we can fix k large such
that max{d(fi(p), fi(xk

i )), 1
k } 6 δ

2 . Once we fix this k, we define the sequence{x̂n}n∈Z by

x̂n =

{
xk

n, if n ̸= i

p, if n = i.

Clearly d(fn((̂x)n), xn+1) 6 1
k 6 δ for n ̸= i − 1, i. Since

d(fi−1(x̂i−1), x̂i) = d(fi−1(xk
i−1), p) 6 d(fi−1(xk

i−1), xk
i ) + d(xk

i , p) 6 1
k

+ 1
k
6 δ

and
d(fi(x̂i), x̂i+1) = d(fi(p), xk

i+1) 6 d(fi(p), fi(xk
i )) + d(fi(xk

i ), xk
i+1) 6 δ

2
+ 1

k
6 δ.
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It implies that {x̂n}n∈Z is a δ−pseudo-orbit. On the other hand, x̂i = p, by definition we obtain that
{x̂n}n∈Z is ε−shadowed, namely, there is y ∈ X such that d(fn

i (y), x̂n) 6 ε for every n ∈ Z.
Clearly d(fn

i (y), xk
n) = d(fn

i (y), x̂n) 6 2ε for n ̸= i. For n = i we obtain

d(fn
i (y), xk

n) = d(y, xk
i ) 6 d(y, p) + d(p, xk

i ) 6 ε + 1
k
6 2ε.

It follows that {xk
n}n∈Z is 2ε−shadowed, that is absurd. This contradiction proves the result.

Proof of the Theorem 1.1.
We assume contrary that there is a p which belongs to S({fn}n∈Z) ∩ AP({fn}n∈Z) but does not in

Xdeg. Then diamγ({p}) > 0 and hence choose ε > 0 such that 0 < 11ε < diamγ(p). By given, we have
p ∈ S(i0, {fn}n∈Z) ∩ AP({fn}n∈Z) for some i0 ∈ Z. From Proposition 2.1 and Proposition 2.2, with δ
(δ < ε) of pseudo-orbit of {fn}n∈Z respect to ε above, there is the order subsequence {nk}k∈Z ⊂ Z, n0 = 0
such that there exists y ∈ X satisfies gk

0 (y) ∈ B[p, δ], ∀k ∈ Z where gk = f
i0+
∑k

h=0
nh

◦· · ·◦f
i0+
∑k−1

h=0
nh+1,

k ∈ Z∗ and g0 = id, moreover, every δ−pseudo-orbit through y at time i is also ε−shadowed. It is easy to
check that p also belongs to S(0, {gk}k∈Z). Indeed, let {xn}n∈Z is δ−pseudo-orbit of {gk}k∈Z, we define

βn =

{
fnk+i

nk
(xnk

), if n = nk + i, i = 1, . . . , nk+1 − 1
xnk

, if n = nk.

Then, {βn}n∈Z is δ−pseudo-orbit of {fn}n∈Z which has βi0 = p. Therefore there is x ∈ X such that

d(fn
i0

(x), βn) 6 ε, , ∀n ∈ Z.

It mean that d(gk
0 (x), xn) 6 ε, ∀k ∈ Z. Hence, p ∈ S(0, {gk}k∈Z), in other word, every δ−pseudo-orbits

of {gn}n∈Z through p at time 0 is ε−shadowed. Similarly, we also have every δ−pseudo-orbits of {gn}n∈Z
through y at time 0 is ε−shadowed. Next, since γ({p}) is compact, connected and by (1), we could choose
the finite sequence, namely {qi}n0

i=0, which satisfies

i) q0 = y, qi ∈ γ({p}) ∩ C({fn}n∈Z), ∀i = 1, . . . , n0,
ii) d(qi, qi+1) 6 δ/2, i = 0, 1, . . . , n0 and d(qn0 , q0) 6 δ/2,
iii) γ({p}) =

n0∪
i=1

B[qi, δ].

Due to (i), there is a number mi (large enough) such that d(gmi
mi−1

(qi), qi) 6 δ/2 for all i = 0, 1, 2, . . . , n0
(m0 = 1). We can choose sequence {mi}n0

0 such that 1 = m0 < m1 < m2 < · · · < mn0 . Then we have
following claims.
Claim 1. The sequence

ξn =


gn

0 (q0), if n 6 0
gn

mi
(qi+1), if mi 6 n < mi+1, i = 0, 1, 2, . . . , mn0

gn
mn0

(q0), if n > mn0 .

is δ−pseudo-orbit for {gk}k∈Z.
Indeed, to order this claim one divide into several cases.

Case 1. If n ̸= 0, n ̸= mi − 1, i = 1, . . . , n0 then

d(gn(ξn), ξn+1) =


d(gn(gn

0 (q0)), gn+1
0 (q0)), if n < 0

d(gn(gn
mi

(qi+1)), gn+1
mi

(qi+1)), if mi 6 n < mi+1 − 1, i = 0, 1, 2, . . . , mn0

d(gn(gn
mn0

(q0)), gn+1
mn0

(q0)), if n > mn0 .

We obtain d(gn(ξn), ξn+1) = 0 in this case.
Case 2. If n = 0, then

d(g0(ξ0), ξ1) = d(q0, q1) 6 δ/2 6 δ.



Case 3. If n = mi − 1 (i = 1, 2, . . . , n0 − 1) then

d(gn(ξn), ξn+1) = d(gmi−1(gmi−1
mi−1

(qi)), qi+1)
= d(gmi

mi−1
(qi), qi+1)

6 d(gmi
mi−1

(qi), qi) + d(qi, qi+1)
6 δ/2 + δ/2 = δ.

Case 4. If n = mn0 − 1 then

d(gn(ξn), ξn+1) = d(gmn0 −1(gmn0 −1
mn0−1 (qn0)), q0)

= d(gmi
mi−1

(qi), qi+1)
6 d(gmi

mi−1
(qi), qn0) + d(qn0 , q0)

6 δ/2 + δ/2 = δ.

Hence, the claim is proved.
On the other hand, {ξn}n∈Z through y at the time 0 and y ∈ B[p, δ], from Proposition 2.2, there

exists ŷ ∈ X such that
d(gn

0 (ŷ), ξn) 6 ε, ∀n ∈ Z.

In particular, there are finite sequence {li}n0
i=0 such that

d(gli
0 (ŷ), qi) 6 ε, i = 1, 2, . . . , n0.

Claim 2. For every z ∈ γ({p}) then d(z, p) 6 5ε.

In fact, let any z ∈ γ({p}) =
n0∪

i=1
B[qi, δ]. Then there is i = 0, 1, . . . , n0 such that d(z, qi) 6 δ.

Therefore,
d(gli

0 (ŷ), z) 6 d(gli
0 (ŷ), qi) + d(qi, z)

6 ε + δ 6 2ε.

To prove this claim, we divide into 2 cases of li.

Case 1. m1 6 li 6 mn0 − 1.
Since (1), we have gli

0 (ŷ) ∈ ω(gli
0 (ŷ)). It implies there is i0 > mn0 such that

d(gi0
0 (ŷ), gli

0 (ŷ)) 6 ε.

In addition, due to i0 > mn0 , we have ξi0 = gh
0 (y) for some h ∈ Z. Further, gk

0 (y) ∈ B[p, δ], we obtain

d(gi0
0 (ŷ), p) 6 d(gi0

0 (ŷ), ξi0) + d(ξi0 , p) 6 2ε.

Hence,
d(z, p) 6 d(z, gli

0 (ŷ)) + d(gli
0 (ŷ), d(z, gi0

0 (ŷ))) + d(z, gi0
0 (ŷ), z)

6 2ε + ε + 2ε = 5ε.

Case 2. li 6 m1 or li > mn0 − 1.
It is clear to see that ξli = gh

0 (y) for some h ∈ Z, it implies

d(ξli , p) = d(gh
0 (y), p) 6 δ 6 ε.

Hence,
d(gli

0 (ŷ), p) 6 d(gli
0 (ŷ), ξli) + d(ξli , p)

ε + ε = 2ε.

Therefore,
d(z, p) 6 d(z, gli

0 (ŷ)) + d(gli
0 (ŷ), p)

2ε + 2ε < 5ε.

This proves this claim.
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From the Claim 2, for every u, v ∈ γ({p}) then

d(u, v) 6 d(u, p) + d(p, v) 6 5ε + 5ε = 10ε.

This contradicts the choice of ε. The proof is complete.
Proof of the Theorem 1.2.
We take p ∈ Xdeg and ε > 0. Since {fn}n∈Z is equi-continuous, there exists ε′ > 0 such that

d(fn
i (x), fn

i (y)) 6 ε (∀i, n ∈ Z), for all x, y ∈ X, d(x, y) 6 ε′. By Proposition 3.1.7 in [11], there is a open
and closed subset U of X such that

i) p ∈ U and diam(U) 6 ε′,
ii) dist(U, X \ U) > 2α > 0 for some A ∈ R+.

By the equi-continuous property of {fn}n∈Z again, we can choose δ > 0 such that x, y ∈ X and d(x, y) < δ
then d(fn

i (x), fn
i (y)) 6 α (∀i, n ∈ Z). Now take a δ−pseudo-orbits {xn}n∈Z with xi = p for some i ∈ Z.

From definition d(fi(xi), xi+1) 6 δ, it implies

d(f i
i+1fi(xi), f i

i+1(xi+1)) 6 α ⇔ d(p, f−1
i (xi+1)) 6 α.

If f−1
i (xi+1) ∈ X \ U , from i) and ii), we have

2α < dist(X \ U, U) 6 d(p, f−1
i (xi+1)) 6 α,

which is contradiction. Then f−1
i (xi+1) ∈ U . Next, since d(fi+1(xi+1), xi+2) 6 δ so

d(f i
i+2fi+1(xi+1), f i

i+2(xi+2)) 6 α ⇔ d(f−1
i (xi+1), f i

i+2(xi+2)) 6 α.

If f i
i+2(xi+2) ∈ X \ U , from i) and ii) again, it implies

2α < dist(X \ U, U) 6 d(f−1
i (xi+1), f i

i+2(xi+2)) 6 α,

which is absurd. Hence, f i
i+2(xi+2) ∈ U . Repeating the argument we obtain f i

i+n(xi+n) ∈ U for every
n ∈ Z. It follows that d(p, f i

i+n(xi+n)) 6 ε′. Therefore,

d(f i+n
i (p), f i+n

i f i
i+n(xi+n)) 6 ε ⇔ d(f i+n

i (p), xi+n) 6 ε, ∀n ∈ Z.

It means that p ∈ S({fn}n∈Z), which is our claim.

3 Conclusion

In this paper, we extend the concept of the shadowable point in case of non-autonomous dynamical
systems and investigate the relations between the set of shadowable points and totally disconnected
property. The results are also related to almost periodic points and the points with converging semiorbits.
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