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Abstract In this paper, we introduce a series of stable algorithms for solving the stiff ordinary
differential equation system. These algorithms are based on the solution to the local linearized
perturbation equation and Padé approximations of exponential function. The algorithms get rid
of the influence of the stiffness and have explicit schemes. In contrast with conventional implicit
schemes, this class of schemes has some advantages such as the simple program code, high precision,
good convergence and strong stability by the virtue of Padé approximation. It is a good assistant
for the researchers unfamiliar with the numerical analysis theory.
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1 Introduction

In scientific research and industry such as celestial mechanics, weather prediction, biology, thermonuclear
reaction, automatic control, electronic network and chemical kinetics, the physical and chemical processes
are often described by ordinary differential equations(ODE). The variables in these processes often have
very different rates of change, that is, the solutions to the ordinary differential equation system include
both fast decreasing components and slowly changing ones. When we solve the numerical solutions of
such kind of ordinary differential equations on a large time scale, the fast decreasing components can
be soon ignored. But these fast decreasing components will seriously interfere with the accuracy and
stability of the numerical solutions of the whole differential equations, and bring great difficulties to the
actual calculation, which is called stiff problem.

The definition of stiff ODE was studied in [1,2]. For the following ODE

y′ = f(y), y(0) = y0, (y ∈ RN ), (1)

the definition of stiffness is currently accepted as follows. If the solution to (1) satisfies two conditions,
(i) the solution changes slowly over t ∈ [a, b]; (ii) for a solution of y(t), (∀t ∈ [a, b]), the characteristic
values of Jacobian matrix ∂yf(y) have no large positive real part, but have at least one large negative
real part, then the system is called stiff ODE.

In the numerical simulation for ODE (1), we have general method with step h

k∑
j=0

αjyn+j = hφ(yn, yn + 1, · · · , yn+k; h), (n = 0, 1, · · · , N − k). (2)

The explicit schemes such as linear multi-step methods and Runge-Kutta methods are unstable and
divergent for stiff problem, the algorithms for the stiff ODE must be implicit algorithms, and the order of
precision of the stable algorithms is limited[3,4,5,6]. The algorithms (2) include constructing and solving
nonlinear algebraic equations, which involve some complicated conditions and skills for the programming
and stability of the algorithms.

Solving the implicit one-step methods for the linear test equation

y′ = λy, y(0) = y0, (y, λ ∈ C1, ℜ(λ) < 0), (3)
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we get the difference scheme

yn+1 = Rj,k(λh)yn, (4)

where yn stands for the numerical solution of y(nh), Rj,k is a j + k degree rational approximation of eλh.
If this approximation is also j + k order, Rj,k becomes the Padé approximation of eλh[6,7],

Rj,k(z) = Gj(k, −z)−1Gk(j, z), Gk(j, z) ≡
k∑

m=0

(j + k − m)!k!
(j + k)!m!(k − m)!

zm. (5)

The Padé approximation (5) has the following properties:
P1. The remainder term is given by

ez = Rj,k(z) + (−1)kj!k!
(j + k)!(j + k + 1)!

zj+k+1 + O(zj+k+2). (6)

P2. Rj,k is A-acceptable iff k ≤ j ≤ k + 2, and L-acceptable iff k + 1 ≤ j ≤ k + 2, where the
A-(L-)acceptable means the difference scheme (4) is A-(L-)stable[8,9,10,11,12].

P3. If j ≤ k + 4, then Rj,k has no poles in the left plane {z|ℜ(z) ≤ 0}.
P4. In the imaginary axis z = yi, |Rj,j(z)| ≡ 1 [13].
The above properties are excellent for solving the numerical solution of stiff ODE. For example, in

[14,15,16], a class of symplectic schemes for Hamilton-Jacobian system is constructed from Rj,j , which
can hold some important features of the original system such as some conserved quantities. The following
analysis shows that, the stiffness of the equation system (1) is mainly described by its locally linearized
equation, and the nonlinear remainder is only a third order perturbation independent of stiffness. Ap-
plying the Padé approximation to the solution of this linearized perturbational equation, we can get rid
of the influence of the stiffness and derive a series of explicit algorithms with simple program code, high
order precision, good convergence and strong stability.

2 Construction of the Difference Schemes

For the general stiff ODE (1), suppose f(y) is smooth enough. Denoting

f0 = f(y0), J0 = ∂

∂y
f(y0), u = y − y0, (7)

then (1) can be rewritten as locally linearized equation plus a perturbation

u′ = f0 + J0u + ∆(u), u(0) = 0, (8)

where

∆(u) ≡ f(y0 + u) − f0 − J0u. (9)

If ||∂2
yf(y)|| ≤ 2c in the neighborhood of u0, then we have

||∆(u)|| ≤ c||u||2, (10)

where || · || is any vector norm or the corresponding induced norm for derivative operators.
If we treat ∆(u(t)) as a known function of t in (8), then the solution u(t) can be formally represented

by the following integral

u(t) = [J−1
0 (eJ0t − I)]f0 +

∫ t

0
eJ0(t−τ)∆(u(τ))dτ, (11)

If J0 is singular, it is treated as J0 + ϵI as ϵ → 0 in the matrix [J−1
0 (eJ0t − I)].
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The formal solution (11) has a wonderful advantage, that is, the coefficient matrix eJ0(t−τ) is a strong
contractive operator for stiff problem, so the high order implicit scheme can be efficiently solved by
iteration. In the usual cases, we can use interpolation polynomial of t to approximate ∆(u(t)) in the
neighborhood of t = 0. By (10), we have

∆(u(t)) = (A0 + A1t + · · · + Ap−3tp−3)t2 + O(tp), (12)

where {Al} are the interpolation coefficient vectors. By∫ t

0
eJ0(t−τ) · τ ldτ = l!J−(l+1)

0 [eJ0t −
l∑

m=0

1
m!

(J0t)m], (13)

substituting (12) and (13) into (11) we get

u(t) = J−1
0 (eJ0t − I)f0 +

p−3∑
l=0

Al(l + 2)!J−(l+3)
0 [eJ0t −

l+2∑
s=0

1
s!

(J0t)s] + O(tp+1). (14)

We express eJ0t by p = j + k order A- or L-acceptable Padé approximation

eJ0t = Rj,k(J0t) + O(tp+1), Rj,k = Pj,kQj,k
−1. (15)

Substituting it into (14) and Omitting O(tp+1) terms, we have

Qj,ku(t) = J−1
0 (Pj,k − Qj,k)f0 +

p−3∑
l=0

(l + 2)!(J0)−(l+3)[Pj,k − Qj,k

l+2∑
s=0

1
s!

(J0t)s]Al. (16)

Converting (16) into difference scheme from tn to tn+1, we get p-th order scheme as follows

Qj,kyn+1 = Qj,kyn + T −1(Pj,k − Qj,k)fnh +
p−3∑
l=0

(l + 2)!T −(l+3)(Pj,k − Qj,k

l+2∑
s=0

1
s!

T s)Alh
l+3, (17)

in which yn is the numeric solution of y(tn) and{
un+1 = yn+1 − yn, h = tn+1 − tn,
fn = f(yn), T = Jnh = ∂

∂y f(yn)h.
(18)

For implicit scheme, the interpolation coefficient Al depends on yn+1. By yn+1, yn, · · · , yn−(p−3), Al for
the p-th schemes can be calculated as follows,

∆(u(t)) =
n+1∑

l=n−p+3

Fl
t − tn

tl − tn

n+1∏
k=n−p+3,k ̸=l

t − tk

tl − tk
+ O(t − tn)p, (19)

where

Fl = fl − fn − Jn(yl − yn), (Fn = 0).

For linear ODE, (17) becomes the pure Padé approximation of exponential functions. By the property
P2, the scheme (17) is A-stable if j = k, and L-stable if k + 1 ≤ j ≤ k + 2. By the property P3, Qj,k is
invertible for all rh < 1, where

r ≡ max
∀l

{ℜ(λl)}, (20)
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λl is the eigenvalue of Jn. By (20) we find r is independent of the stiffness, because the stiffness is
determined by λl with large negative real part.

Now we construct some concrete schemes. The second order schemes are all explicit, because the
nonlinear term ∆(u) is a third order perturbation as shown below. For second order A-stable scheme, by

R1,1(z) = P1,1Q1,1
−1 = (1 + 1

2
z)(1 − 1

2
z)−1, (21)

substituting it into (17) we get

(I − 1
2

T )(yn+1 − yn) = fnh. (22)

For the 2-order L-stable scheme

R2,0(z) = (1 − z + 1
2

z2)−1, (23)

by (17) we have

(I − T + 1
2

T 2)(yn+1 − yn) = (I − 1
2

T )fnh. (24)

For the third order L-stable scheme,

R2,1(z) = (1 + 1
3

z)(1 − 2
3

z + 1
6

z2)−1. (25)

By (19), we get the second order interpolation polynomial

∆(u(t)) = [fn+1 − fn − Jnun+1]
(

t − tn

h

)2

+ O(h3). (26)

Substituting (25) and (26) into (17) we get a third order scheme

(I − 2
3

T + 1
6

T 2)un+1 = (I − 1
6

T )fnh + 1
3

(I − 1
2

T )[fn+1 − fn − Jnun+1]h. (27)

Similarly, we can easily construct higher order schemes. In these schemes, the solved values yn, yn−1, yn−2, · · ·
are used to interpolate ∆(u(t)) and the schemes become multi-step methods. Obviously the order of pre-
cision of the scheme (17) is not limited.

3 Convergence of the Algorithm

Now we discuss the convergence and stability of the schemes. We take the following hypotheses for
convenience, but the conclusions can be easily generalized.

H1. There is a U -matrix U , such that

UJ0U−1 = diag(λ1, λ2, · · · , λN ), (28)

H2.

r = max
∀k

{ℜ(λk)} ≤ 0, (29)

H3. There exists R > 0, such that the second order differential operator of f(y) is bounded in the
domain ||y − y0|| ≤ R, namely

max
∀||y−y0||≤R

||∂2
yf(y)|| = 2c, (30)
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where the norm and the inner product of vectors are defined by

||x|| ≡
√

x+x, (x, y) ≡ x+y, (31)

and the norm of the derivative operators ∂yf(y), ∂2
yf(y) are the corresponding induced norm, where the

index ‘+’ denotes transposed conjugate.
Theorem 1. Assume that v is the solution of linearized equation

v′ = f0 + J0v, v(0) = 0, (32)

u is the solution of (8). If H1, H2 and H3 hold, then we have

||u − v|| ≤ p(t) − 1
r

(ert − 1)||f0||, (33)

where

p(t) =


2 tan(αt)||f0||
2α−r tan(αt) if r2 < 4c||f0||,
2t||f0||
2−rt if r2 = 4c||f0||,

2 tanh(αt)||f0||
2α−r tanh(αt) if r2 > 4c||f0||,

(34)

in which α = 1
2

√
|r2 − 4c||f0|||.

Proof. By (32) and (H1,H2), we have

d

dt
||v||2 = (v, f0) + (f0, v) + (Uv)+[(UJ0U−1)+ + (UJ0U−1)](Uv)

≤ 2||v|| · ||f0|| + 2r||v||2, (||v(0)|| = 0). (35)

By Gronwall inequality we get

||v|| ≤ 1
r

(ert − 1)||f0|| ≡ q(t), (36)

where

q′ = ||f0|| + rq, q(0) = 0. (37)

Let w = u − v, by (8) and (32) we have

w′ = J0w + ∆(w + v), w(0) = 0. (38)

By H1 and H3 we have

d

dt
||w||2 ≤ 2r||w||2 + 2c||w||(||w|| + ||v||)2

≤ 2r||w||2 + 2c||w||[||w|| + q(t)]2, ||w(0)|| = 0, (39)

or equivalently

d

dt
||w|| ≤ r||w|| + c[||w|| + q(t)]2, ||w(0)|| = 0. (40)

For the following equation

p′ = ||f0|| + rp + cp2, p(0) = 0, (41)

the solution is given by (34). Denoting W = p − q, by (37) and (41), we have

W ′ = rW + c[W + q(t)]2, W (0) = 0. (42)
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Comparing (40) with (42), we get ||w|| ≤ W = p − q. By (34) and (36), the proof is finished.
The above theorem shows how the parameters (r, c) influence precision of the linearized equation. By

(33) and (34), we get

||u − v|| ≤ 1
3

c||f0||2t3 + O(t4), (43)

so the nonlinear term ∆(u) only results in a third order perturbation to the solution, and the perturbation
is independent of stiffness of the ODE. In what follows, we take scheme (27) as an example to show the
convergence and stability.

Lemma 2. If H1, H2 and H3 hold, and the step length h satisfies

h ≤ h̃ ≡

√
3

4c||f0||
, (44)

then the sequence {Xm|m = 0, 1, 2, · · · } generated by the iterative scheme of (27)

Xm+1 = Af0h + B[f(y0 + Xm) − f0 − J0Xm]h, X0 = 0 (45)

is bounded, where {
A = (I − 2

3 T + 1
6 T 2)−1(I − 1

6 T ), T = J0h,
B = 1

3 (I − 2
3 T + 1

6 T 2)−1(I − 1
2 T ). (46)

Proof. By H1 and H2, it is easy to check

||A|| ≤ 1, ||B|| ≤ 1
3

. (47)

By (45) and H3, we have

||Xm+1|| ≤ ||f0||h + 1
3

c||Xm||2h, ||X0|| = 0. (48)

If (44) holds, the following monotone increasing sequence {am}

am+1 = ||f0||h + 1
3

chãam, a0 = 0 (49)

is bounded, and we have

am → ã ≡ 3
2ch

(1 −
√

1 − 4
3

c||f0||h2 ) ≤
√

3||f0||
c

. (50)

Comparing (48) with (49), by induction we can prove ||Xm|| ≤ am < ã, (∀m). This finishes the proof.
The theorem shows this scheme is stable if h ≤ h̃, and h̃ is irrelative to the stiffness.
Theorem 3. Under the conditions of Lemma 2, the iterative scheme (3.17) is convergent.
Proof. By (45) we get

||Xm+1 − Xm|| ≤ h||B|| · ||f(y0 + Xm) − f(y0 + Xm−1) − J0(Xm − Xm−1)||. (51)

By mean value theorem and (47), we have

||Xm+1 − Xm|| ≤ 1
3

h||∂2
yf || · ||ξ|| · ||Xm − Xm−1||. (52)

By Lemma 2 we learn ||ξ|| ≤ ã, so

||Xm+1 − Xm|| ≤ δ||Xm − Xm−1||, (53)
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where the contractive coefficient

δ ≡ 1 −
√

1 − 4
3

c||f0||h2 < 1. (54)

The proof is finished.
Theorem 3 shows that the nonlinear scheme (27) can be solved by direct iteration if h is controlled by

(44). Further analysis shows that, the parameter µn ≡
√

c||fn|| is a measurement for nonlinearity, which
is invariant under the scaling transformation z = κy. If µnh ≪ 1, the solution is mainly determined by
the linear part of the equation.

Theorem 4. The schemes (17) keep the linear conserved quantities of the original equation (1).
Proof. Suppose

V (t) =
N∑

l=1

ClYl(t) = C · y(t) (55)

is conserved, i.e. V (t) ≡ V (0), where C ≡ (c1, c2, · · · , cN ) is the coefficient vector, Yl(t) is the l-th element
of y. Since

0 = V ′ = C · y′ = C · f(y), (56)

we have

C · ∂f

∂y
= C · J(y) ≡ 0. (57)

Multiplying (17) by C, and using (56) and (57) repeatedly, by C · fn = 0, C · T = 0, we get

C · Qj,kun+1 = C · un+1 = C · (yn+1 − yn) = 0, (58)

so Vn+1 = Vn. The proof is finished.

4 Numerical Experiments

At first, we examine the scheme (27) by the nonlinear test equation

Z ′ = (λ − Z)Z, Z(0) = Z0, (59)
J = f ′ = λ − 2Z, f ′′ = −2, (60)

where (λ, Z, Z0) ∈ C1, ℜ(λ) ≤ 0. The rigorous solution is given by

Z(t) = λZ0

Z0 + (λ − Z0)e−λt
. (61)

In the case ℜ(λ) < 0, all the trajectories start from Z = λ as t → −∞ and converge to Z = 0 as t → ∞.
ℜ(λ) = 0 corresponds to periodic trajectory.

In numeric simulation, we set Z = X + Y i in (59) to transform it into the real form, then we get

X ′ = uX − vY − X2 + Y 2, (62)
Y ′ = vX + uY − 2XY, (63)

in which λ = u + vi.
Denote the numerical solution by (x, y). From FIG.1, we find that, the coefficient functions of error

|(X −x)/h3| and |(Y −y)/h3| approach limit functions as h → 0, so the scheme (27) has global third order
precision. On the other hand, these functions are decreasing functions of h, which means the scheme is
strongly stable. However, the absolute values of coefficient functions are quite large, which is caused by
λ.
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The exact and numerical trajectories of the nonlinear test equation (62) and (63) are displayed in
FIG.2, which shows the numerical solutions keep the main features of the exact solutions.

At last, we solve the following chemical reaction equation system
y′

1 = −0.04y1 + y2y3,
y′

2 = 400y1 − 104y2y3 − 3 × 103y2
2 ,

y′
3 = 0.3y2

2 ,
y1(0) = 1, y2(0) = y3(0) = 0.

(64)

The eigenvalues of the Jacobian matrix J are (λ1, λ2, λ3) = (0, 0, −0.04) at t = 0, but they becomes
(λ1, λ2, λ3) = (0, −0.36, −2180) at t = 0.01. This means the dynamical equation system has not only high
stiffness but also large ||∂2

yf || in the neighborhood of t = 0. The maximum step length for convergence
of iteration at t = 0 is hmax=̇0.00136, but hmax > 3.5 if t > 0.001. So we use the adaptive step length in
the numerical simulation. The numerical result is displayed in FIG.3, which shows y2(t) increases rapidly
near t = 0. (64) has a linear conserved quantity y1(t) + 10−4y2(t) + y3(t) ≡ 1. The numerical solution
also exactly keeps this relation.

In summary, expressed the solution of the local linearized perturbation equation of the stiff ODE by
Padé approximations of exponential function, we introduce a series of algorithms to resolve the numerical
solution. The algorithms get rid of the influence of the stiffness and have high order schemes. In contrast
with conventional implicit schemes, the above schemes have simple program code, high order precision,
good convergence and strong stability. They are good assistant of the researchers unfamiliar with the
numerical analysis theory.
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