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Abstract Analytic and numerical analysis for the initial non-linear elastic stage of changing in
the shape of a circular shell subjected to a high-pressure liquid is performed, with the shell being
under two rigid constraints: an external cylindrical cavity and/or an internal rod. In this stage,
the emergence of alternating bulges and depressions is governed by the balance between the non-
linearity and dispersion effects. In the framework of the Cosserat theory, the dependence of the
curvature of the shell cross-section on the external pressure is obtained. Knowing the curvature
make it possible to restore the form of the cross section with the methods of the differential
geometry. It is shown that unwanted wave-like folds and rigid ribs on the deformed shell surface
can be eliminated by suitably selecting the constraints. Cost-efficient ways of producing hollow
articles from pipe billets with the hydrostatic pressure method are discussed.
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1 Introduction

The ways of controlling the evolution of local instabilities of the hydrostatically compressed metal shells
were studied experimentally [1,2]. The ranges for the deformation degrees of the shell material, external
pressure values and geometrical parameters of the shell were established for the cases when an initially
circular shell takes a new circular, square or tooth-like cross-section shape under pre-assigned rigid
constraints. These results open the possibility of developing new technologies for obtaining hollow articles
with complex shapes from tube billets with minimal time, energy and material costs. The linear theory
gives only a rough estimation of the critical loads leading to losing the shell shape stability and of
a possible number of the waves emerged [3,4]. To date, almost all the experimental and theoretical
investigations were aimed at searching for the conditions when each shell retains its shape unchanged
under pre-assigned external impacts. This is extremely important for calculations and design of many
vital constructions such as submarine hulls, pipes for drilling oil wells, high-speed rail cars, etc.

At the same time, the effects of strongly non-linear elastic bendings of the shell and the ways of
controlling the change in its shape remain hardly investigated. The majority of the studies concerning
the change in the shell shape use numerical modeling without applying analytical methods (see [5,6,7,8]
and references therein). The most substantial results are obtained for pressurized shells made from a
rubber-like material [6]. However, the numerical approach does not explain fully the regularities of the
phenomena observed and never investigates the ways of controlling the change in the shape of the samples.
A combination of both numerical and analytical approaches is thought to be more effective. The problem
can be constructively solved in the framework of simplified non-linear models. On the one hand, the
latter take correctly into account the basic interactions and rigid constraints governing the change in
the shell shape, and on the other hand, admit exact solutions. Analysis of the solutions gives criteria for
choosing the constraints to drive the process of change in the shell shape.

In the experiments, on the surface of the shell subjected to hydrostatic pressure, bulges and depressions
alternating in the circular direction arise. At the same time, the shell retains its cross-section unchanged
along the generating line. Therefore, the nature of the process of corrugating the shell can be understood
within the problem on change in the shape of an initially circular thin ring of unit height. In such
a formulation, the equations that determine non-linear bends of the ring coincide with the equations
describing the change in the shape of a flexible rod, with its axis residing in a fixed plane. Beginning
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from Euler’s works, the theory of flexible rods serves as a reference for solving boundary problems for
elastic systems subjected to given loads. It is appropriate to recall some results of the theory of elastic
rods, useful for discussing the problem of change in the shell shape.

It is known that the rods can transform their shape when undergone by varied external loads. Though
some types of equilibrium of the rods and rings are known to be unstable, they can be stabilized by
introducing confirmatory constraints [3]. It is such an approach that applies to controlling the change in
the shell shape [1,2].

When the rod is compressed rapidly, i.e. the load-increase time is shorter than the deformation
relaxation time, its elements cannot move immediately in the direction normal to the rod axis. Before
the bends of the rod become visible, the compressing impact can reach not only a first critical value
but higher ones typical for different stationary states of the rod. In this case, the final states of the
loaded rods with higher forms of the bends are observed. Such a situation was first described within the
linear theory of elasticity [9]. As in the case of the elastic rods, the hydrostatically compressed shells also
have bulges and depressions on their surface [1,2,3]. The number of such formations depends on ratio of
geometric and material parameters of the shell and the magnitude of the external pressure.

The problems of change in shape of rods and rings under different point loads or mutual contacts
of rings and smooth surfaces attract still intent attention of researchers ([10,11,12] and the references
therein). However, the influence of the constraints on localization of bends of a hydrostatically compressed
shell in the initial non-linear elastic stage of deformation, the ways of controlling the process of change
in the shell shape are not yet studied. The papers [13,14] show analytic solutions for the Cosserat
model, describing large non-linear bends of the cross-section of the shell under hydrostatic pressure. It is
demonstrated that under certain conditions the shell cross-section can be shaped into regular polygons
even in absence of external constraints. The formation of the plane facets on the surface of the loaded
shell is important for technological applications and can be observed in experiments [3]. The traditional
theory of shells does not explain how they form.

The present paper develops, generalizes the approach mentioned above and analyses Cosserat-type
models by analytical and numerical methods for describing significant deformation of a cylindrical circular
shell subjected to hydrostatic pressure, under two rigid constraints: an outer bounding cylindrical cavity
and a round rod inside the latter. Typical scenarios of localization of the shell deformations during the
initial non-linear elastic stage of the change in its shape are revealed. The work reports on the conditions
(shell geometry and appropriate range of external pressures) under which the external constraints prevent
from forming wave folds and rigid ribs on the deformed shell surface. The general principles of producing
hollow articles with varying cross-sections from pipe billets are formulated.

2 Formulation of the Model

Let the length of a circular cylindrical shell subjected to hydrostatic compression be a few times greater
than its radius. Then, the longitudinal deformation of the middle segment of the shell is assumed to be
the same at each step of changing its (transverse) cross-section [15,16]. Consider a circular ring of unit-
height in the middle segment of the shell. We examine the dependence of its two-dimensional equilibrium
states on applied external pressure p. Suppose the axis of the shell to be directed along the Oz-axis of a
Cartesian coordinate system.

In the non-deformed state, the middle line of the cross–section of the shell has radius R. When
deformation occurs, the line can be described by the curve

r(s) = (x(s), y(s), 0), (1)

where s is the natural parameter of the curve, measured off from some point of the middle line. Then,
the unit tangent vector of the curve is

τ = dr
ds
. (2)

In the main approximation, when bended, the shell saves the distances between points of the middle line.
So we have 0 ≤ s ≤ 2πR. Let k = (0, 0, 1) be the unit vector directed along the axis of the shell. Then,

18 Journal of Advances in Applied Physics, Vol. 1, No. 1, November 2019

JAAP Copyright © 2019 Isaac Scientific Publishing



the unit vector of the outward normal to the shell surface is defined by

n = [k × τ ] (3)

Cosserat’s approach assumes that the interaction of parts of the shell surface is carried out by forces
and bending moments distributed along the lines of their separation [15]. Let us consider a small part of
the ring corresponding to the interval [s, s+ds]. The material of the ring situated in the region s̃ ≥ s+ds
affects this part of the ring with the resultant contact force q(s + ds) and the resultant contact couple
m(s + ds) = m(s + ds)k. Whereas the material situated in the region s̃ ≤ s affects the part with the
resultant force −q(s) and the bending moment −m(s) = −m(s)k. The hydrostatic pressure always acts
along the normal vector. Thus, the element under consideration is affected by the force pnds. In the case
of an external pressure we have p < 0. The equilibrium conditions for the ring element reduce to Eqs.
[15]

dq
ds

+ pn = 0, dm
ds

+ [τ × q] = 0. (4)

If the shell is thin enough, the Euler–Bernoulli–Clebsch constitutive equation can be employed to
describe the moment m [10,11,12,17]:

m = −γ
(
κ̃ + 1

R

)
, (5)

where γ is a coefficient of proportionality. The approximation (5) coincides with the relation of the
traditional theory of geometrically non-linear elastic shells under the condition κ̃/h ≪ 1 [3,11,17]. Here
κ̃ is the curvature of the shell cross section and h is its thickness. The linear theory of shells gives

γ = γ0h
3, γ0 = E

12(1 − ν2)
, (6)

E is Young’s modulus, ν is Poisson’s ratio. The physical nonlinearity of the material, in particular its
elastic-plastic properties, is often taken into account by renormalizing the elastic moduli [3]. Further, we
regard γ0 as a phenomenological parameter of the model. Using the approximation (5) we are going to
obtain exact solutions of the problem and establish the key features of deforming the shell in the presence
of constraints. As a result, we will reveal the possibility of controlling the change in the shape of shells
subjected to the external hydrostatic compression.

The vector of the contact force q lies in the xOy plane and, therefore, admits the representation

q = qnn + qτ τ . (7)

Taking into account (6) and Frenet–Serret formulae

dτ

ds
= κ̃n; dn

ds
= −κ̃τ , (8)

from (4) and (5), we derive a closed set of differential equations to calculate qn, qτ , κ̃:

dqτ

ds
− qnκ̃ = 0, dqn

ds
+ p+ qτ κ̃ = 0, γ

dκ̃
ds

+ qn = 0.

Hence, the shear and tangential forces can be expressed in terms of the curvature of the shell cross-section:

qn = −γ dκ̃
ds
, qτ = γ

(
Q− κ̃2

2

)
. (9)

The integration constant Q will be determined below. The curvature of the middle line of the shell
cross-section satisfies the equation

d2κ̃
ds2 = Qκ̃ − |p|

γ
− κ̃3

2
. (10)

For the further analysis, it is convenient to use the dimensionless variables

θ = s/R, κ = Rκ̃, q0 = R2Q.
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Thus, 0 ≤ θ ≤ 2π and the first integral of Eq. (10) acquires the form(
dκ
dθ

)2

= q0κ2 − 2|p|
γ0

(
R

h

)3

κ − κ4

4
+ l0

4
, (11)

where l0 is yet another integration constant.
Analysis shows, that the solutions of Eq. (11) may be physically meaningful, i.e. be unambiguous and

with no self–intersection loops, if the 4-th degree polynom on the right–hand side of Eq. (11) has only
two real roots a and b and two complex–conjugate roots c = b1 + ia1 and c∗ = b1 − ia1. The roots are
related to the parameters of Eq. (11) as follows:

b1 = −1
2

(a+ b), l0 = −ab|c|2, (12)

4q0 = 3
4

(a+ b)2 − a2
1 − ab, (13)

8|p|
γ0

(
R

h

)3

= −(a+ b)
[
a2

1 + 1
4

(a− b)2
]
> 0, (14)

where b < a < −b The parameter b is always negative. The desired solution of Eq. (11) has the form [18]

κ = aB (1 − cnχ) + bA (1 + cnχ)
B (1 − cnχ) +A (1 + cnχ)

, (15)

where χ = θ
/

2g, A2 = (a − b1)2 + a2
1, B2 = (b − b1)2 + a2

1, g = (AB)−1/2. The modulus of the Jacobi
function k is given by the expression

k2 = (a− b)2 − (A−B)2

4AB
, 0 ≤ k2 ≤ 1

The values of the curvature of the middle line must be the same at both θ = 0 and θ = 2π. This
requirement leads to the first limitation imposed on the solution parameters:

π
√
AB = 4K (k)m, (16)

where K(k) is the complete elliptic integral of the first kind, the parameter m = 2,3,4 . . . specifies the
number of the bulges on the shell cross-section.

At the initial stage of change in the shell shape, forming patterns of the bulges on the surface begins
when the magnitude of pressure exceeds a critical threshold value. This process is governed by both the
nonlinearity and dispersion effects. The nonlinear interactions result in localizing of the deformations
and the effects of dispersion contribute to spreading of such peculiarities. Every equilibrium state of the
shell is possible within a certain range of the pressure. The lower the pressure the fewer number of the
bulges in the cross section of the shell is possible. The nonlinearity of the problem is that the ranges of
the pressure, each corresponding to its own number of bulges, can overlap each other [13,14].

The most general approach to the analysis of changing in the shape of loaded rods is considering a set
of possible static configurations and studying bifurcations between each other with energetic principles
(see [3,15] and references therein). For the shell under the hydrostatic pressure quantity(

dκ
dθ

)2

− q0κ2 + 2|p|
γ0

(
R

h

)3

κ + κ4

4
= −1

4
ab|c|2 (17)

corresponds to the density of the energy. Hence, the value of the pressure pc for which switching from
the state m to the state m+ 1 is possible is determined by the condition

− ab|c|2
∣∣∣∣
p=pc,m

= −ab|c|2
∣∣∣∣
p=pc,m+1

. (18)
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Figure 1. The pressure ranges for the equilibrium state with the various numbers m of the bulges on the shell
surface (Ẽ = −ab|c|2/4).

Analysis shows, that the pressure range for m = 2 doesn’t overlap with the range for m = 3 (Fig. 1).
Therefore, switching from one such a state to another one is impossible.

Switching from the m = 3 state to the m = 4 state is quite possible under relatively low external
pressure pc. For the shell having four bulges on its surface or more switching to next state can occur under
higher magnitude of the external pressure. As the pressure grows, a sequence of switches throughout a
number of consecutive states can take place. If the rate of pressure growth is low the shell consecutively
switches from the state m = 3 throughout the states m = 4, 5, 6, . . .. At the same time, if the rate of
the pressure growth is high enough the shell can immediately switch to the state m = 6 after having
switched from the m = 3 state to the m = 4 one. Fig. 1 demonstrates that in the latter case the full
increments of the pressure and the energy of the system are lesser than in the former one.

The positive definite second variation of the energy density (17) is the condition of sufficiency for the
stability of the stationary state κ = κ0. The configuration κ0 is stable if

3
2
κ2

0 − q0 > 0.

This inequality is equivalent to the condition

2|p|
γ0|a+ b|

(
R

h

)3

+ 1
4
(
5a2 − b2) > 0. (19)

Analysis shows, that inequality (19) is fulfilled within the pressure range for every configuration with the
parameter m = 2,3,4,5.

From (15) it follows, that the curvature κ(θ) ∈ [b, a]. The parameter b is always negative, as mentioned
above. Values of θ such that κ(θ) = b(p) correspond to the crests of the bulges clearly visible on the shell
surface. Depending on the pressure magnitude, the parameter a can be both negative and positive. The
parameters {θ |κ(θ) = a(p) < 0} correspond to the points of the bulge crests whose amplitude is smaller
than for the points {θ |κ(θ) = b(p)} (0 > a > b). The parameters {θ |κ(θ) = a(p) > 0} correspond to
the points of the depressions which arise as the pressure magnitude grows (Fig. 2). The case a(p) = 0 is
of great interest. For such pressure the facets emerge on the shell surface, with the cross-section of the
shell looking like a regular polygon with smoothed vertices (Fig. 3)

The unit vectors n and τ lie in the xOy plane and can be parametrized as

n = (cosΦ(θ), sinΦ(θ)), τ = (− sinΦ(θ), cosΦ(θ)). (20)

The Frenet–Serret formulae (8) can be reduced to the equation for the phase
dΦ
dθ

= −κ(θ). (21)
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a < 0 a = 0 a > 0

Figure 2. The shell cross-sections for different values of the external pressure, m = 3

m=3 m=4 m=5 m=6

Figure 3. Configurations of the shell with facets for m = 3,4,5, 6

The solution of Eq. (21) has the form [13,14]

Φ(θ) =
[
AB

a+ b
− (aB + bA)

A+B

]
θ−

− (A+B)2

2
√
AB (a+ b)

Π

(
θ
√
AB

2
, α2, k

)
+

+ 2acrtan

[
(a− b)
2
√
AB

sd

(
θ
√
AB

2
, k

)]
(22)

and the property Φ(θ = 0) < Φ(θ = 2π) is valid. Here

sd(x, k) = sn(x, k)
dn(x, k)

,

Π(x, α2, k) is the complete elliptic integral of the third kind [18]

Π(x, α2, k) =
∫ x

0

dx′

1 − α2sn2(x′, k)

with the modulus k and the parameter α2

α2 = − (A−B)2

4AB
< 0.

The phase Φ(θ) is measured off from a ray in the xOy plane, the position of which is determined by a
constant, appearing after integration of Eq. (21). In (22) the integration constant is chosen in such a
way, that Φ(θ = 0) = 0, i. e. the ray coincides with the Ox axis of the Cartesian coordinate system and
passes through the bulge crest of the cross section.

The function Φ(θ) must get increment of 2π as variable θ varies from 0 to 2π for the curve r(θ) not
to have self intersections. This requirement gives one more restriction for the parameters of the problem:

Ab+Ba

A+B
+ 1 + 2m [Λ(β, k) − 1] = 0, (23)
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where Λ(β, k) is the Heuman lamba–function [18]:

Λ(β, k) = 2
π

[E(k)F (β, k′) +K(k)E(β, k′) −K(k)F (β, k′)] ,

β = arcsin 2
√
AB

A+B
, k′ =

√
1 − k2;

F (β, k′) and E(β, k′) are the incomplete elliptic integrals of the first and second kind respectively with
the modulus k′.

Integration of Eqs. (2), (20) gives the shape of the middle line of the shell section:

x = x0 −R

∫ θ

0
sinΦ(θ)dθ, y = y0 +R

∫ θ

0
cosΦ(θ)dθ. (24)

The integration constants

x0 = R

2π

∫ 2π

0

∫ θ

0
sinΦ(θ′)dθ′dθ, y0 = − R

2π

∫ 2π

0

∫ θ

0
cosΦ(θ′)dθ′dθ

are chosen from the condition that the shell axis coincides with the Oz one.
Generally, constraints (16), (23) and (14) constitute a closed system of equations for calculating the

values a, b, a1 as functions of the pressure magnitude p and the parameter m.
The model proposed describes significant non-linear deformations of the shell. The approximation of

the linear theory corresponds to a small change in the cross section curvature if the parameters a and b
are close to one another and to the curvature of the non-deformed cross section:

a = −1 + ε, b = −1 − ε, 0 < ε ≪ 1. (25)

In this case, from (12) it follows that

b1 ≈ 1, c ≈ 1 + i a1.

Hence
A ≈ B ≈

√
4 + a2

1, k ≈ 0.

As the result of it, all the significant relations can be resolved into the elementary functions. Constraint
(23) is satisfied as an identity, constraint (16) results in

A ≈ B ≈
√

4 + a2
1 = 2m. (26)

Low amplitude corrugation of the cross section is given by [13,14]

√
x2 + y2 ≈ R

(
1 + ε cosmθ

m2 − 1

)
(27)

According to (14), (26) corrugation of the shell starts as the external pressure overcome the threshold
value

|p|lin = γ0

(
h

R

)3 (
m2 − 1

)
(28)

If we use Eq. (6) for the parameter γ0, then the threshold value (28) coincides with the critical load for
the linear theory [3].

In [13,14] the possible equilibrium states of the shell depending on the value of the external pressure
were analytically described. In this paper the influence of the most simple constraints on corrugation of
the shell is investigated. Applying such constraints can eliminate unwanted folds and patterns on the
shell surface, which arise on the first non-linear elastic stage of deformation.
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3 Deformation under Constraints

Here we will analyse peculiarities of deformation of the initially circular shell confined by a number of
constraints by the external hydrostatic pressure. To begin with, let us consider the deformation of the
shell placed into a hollow circular arbor. Then, we will discuss the case of the shell around an inner rigid
rod.

Each of the cases has its own disadvantages which prevent from producing articles of the variable
diameter along the shell axis. At the same time, useful properties of the methods considered below
complement one another. Therefore, the combined application of these constraints deliver possibility for
controlling the process of changing in the shell shape under the hydrostatic pressure.

3.1 The Shell inside a Hollow Cylindrical Arbor

Let the shell with the radius R be placed into the hollow cylindrical arbor with the radius R(e), with
R < R(e). The axes of the shell and the arbor coincide and are directed along the Oz axis. Being under
the external pressure the shell will lose the stability of the form once the magnitude of the pressure
overcomes some threshold value. Then, m bulges stretched along the shell generatrix will arise on the
surface. Suppose the radius R(e) relates to the radius R in a such way, that the shell touches the arbor
at the points A and E (see Fig. 4) as p = pe. From that moment the shell is adjacent to the arbor
along the arcs AB and ED. As long as the symmetry of the shell stays intact during the interaction of

Ψ

Ψ

xO

y

A

C

B

D
E

R
(e)

π
m

Figure 4. The scheme of changing in the shape of the shell constrained by the outer arbor

the shell with the arbor, the full representation of the process of deformation is given by the segment
[sA, sE ] = [0, 2πR/m].

Let the angle ψ specify the arcs of the outer arbor which the parts of the cross section ED and AB
are adjancent to. As long as the length of the ED arc equals to the length of the AB arc, the natural
parameter s of the free part of the shell BCD varies within [sB , sD], where

sB = R(e)ψ, sD = 2πR
m

−R(e)ψ.

For the further analysis it is more convenient to use the dimensionless variables

θ = s

R
, κ = Rκ̃, x = x̃

R
, y = ỹ

R
,

ξ = R(e)

R
, θB = ξψ, θD = 2π

m
− ξψ.

Here κ̃ is the initial curvature of the shell cross section, x̃, ỹ are the dimensional Cartesian coordinates
of the r(s) radius vector in the cross section plane xOy.

As before, the phase Φ(θ) is defined by the equation

Φ(θ) = −
∫ θ

θB

κ(θ′)dθ′ + Φc, (29)
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with Φc being the integration constant. The dimensionless coordinates for the radius vector of the free
part of the middle line can be written out as follows

x(θ) = x0 −
∫ θ

θD

sinΦ(θ′)dθ′, y(θ) = y0 +
∫ θ

θB

cosΦ(θ′)dθ′, (30)

where x0, y0 are the integration constants. Let (xD, yD) and (xB , yB) be the coordinates of points D and
B respectively. The condition x(θD) = xD determines the constant x0

x0 = ξ cos
[

2π
m

− ψ

]
,

and the condition y(θB) = yB determines the constant y0:

y0 = ξ sinΨ.

The part ABCDE is a smooth curve. At the B point the tangent vector τ (θ) coincides with the
tangent vector for the arbor. It results in the condition for the integration constant Φc:

Φc = Φ(θB) = Ψ.

Let us denote the phase function (22) as Φ0(θ). Then (29) takes the form

Φ(θ) = Φ0(θ) − Φ0(θB) + Ψ. (31)

Similarly, the condition for the tangent vectors coincidence at the D point results in

Φ(θD) = 2π
m

− ψ. (32)

The first equation for calculation of the parameters a, b, a1, ψ results from matching (31) with (32):

Φ0(θD) − Φ0(θB) = 2π
m

− 2ψ. (33)

The second equation results from the equality xB = x(θB) = ξ cosψ:

ξ cosψ = ξ cos
[

2π
m

− ψ

]
+
∫ θD

θB

sinΦ(θ′)dθ′ (34)

And the third one is the result of the equation yD = y(θD) = ξ sin(2π/m− ψ):

ξ sin
[

2π
m

− ψ

]
= ξ sinψ +

∫ θD

θB

cosΦ(θ′)dθ′ (35)

As in the case for the unconstrained shell, the fourth Eq. (14) relates the parameters a, b, a1 with the
magnitude of the external pressure p.

Eqs. (33), (34), (35), (14) form a system of transcendent equations for the unknown values a, b, a1, ψ
with the parameters m, p, ξ. The system has solution for any p ∈ [pe, plim], with the limit pressure plim
depending on the relative radius of the outer arbor ξ = R(e)/R for every natural number m > 1 (see Fig.
5).

Analysis shows, that deformation of the shell constrained by the outer arbor has distinctive peculiar-
ities, which persist for every number of the bulges m. After the shell has come in the contact with the
arbor the bulges adjoin the arbor tighter as the pressure grows. Then, this process becomes slower and
slower. The shell gets a “rigid” form. Growth of the pressure slightly changes the shell (Fig. 6).

Consequently, the outer arbor not only constrains the amplitude of the bulges on the shell surface
but stabilizes their form throughout a wide range of the pressure. At the same time, the outer arbor
doesn’t set any required profile for the shell cross section.
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Figure 5. The limit pressure plim dependence on the parameter ξ = R(e)/R. The small insertions demonstrate
the final states of the cross section for the different ξ and the corresponding limit magnitudes of the pressure

1 2 3

Figure 6. The evolution of the cross section shape of the constrained shell for ξ = 1.1: 1 — the moment of the
contact; 2 — some intermediate configuration; 3 — the limit state
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It is important for applications that the internal stresses get concentrated in the shell along the shell
arcs adjoining to the arbor near the bulges vertices. The compressive stresses in the shell material along
the directions τ (θ) are given by the formula

T = qτ

h
= γ0

(
h

R

)2(
q0 − κ2

2

)
.

The shear stresses along the directions n(θ) have the form

N = qn

h
= −γ0

(
h

R

)2 dκ
dθ
.

For m = 3 the dependence of the maximum stress intensity S =
√
N2 + T 2 on the pressure magnitude

is shown on Fig. 7. The magnitude S reaches the maximum at the vertex of the convexity (the point B
on Fig. 4).

Figure 7. The dependence of the maximum stress intensity S on the pressure p for the shell constrained by the
outer arbor (m = 3, ξ = 1.05)

3.2 The Change in the Shape of the Shell on a Rigid Rod
Let us place a rigid round rod of the radius R(i) inside the shell (R(i) < R). In Fig. 8 the deformed shell
comes into contact with the rod at the point B (the common axis of the shell and the rod coincides with
the Oz one).

Provided the arc length s of the cross section measured off from the point A, the point B corresponds
to the parameter sB = πR/m or the dimensionless parameter θB = sB/R = π/m.

As the pressure is increased further, the shell begins to bend around the rigid rod. The point where
the shell and the rod touch each other is shifted from the point B to the point C. The natural parameter
sC = R(i)φ+π(R−R(i))/m or the dimensionless parameter θC = δφ+π(1−δ)/m, δ = R(i)/R corresponds
to the point C. Here φ is the angle between the Ox axis and the radial line OC (see Fig. 8).

For s ∈ [sA, sC ] the shape of the shell is defined by the phase Φ(θ) (22). The parameters a, b, a1, φ
are determined by additional equations.

From the condition for the tangential vector τ to the surface of the shell section to coincide with the
tangential vector to the surface of the rigid rod at the point C we obtain

Φ(θC) = φ. (36)

The coordinates of points of the line AC are found by integrating Eqs. (2) and (20)

x(θ) = R

∫ θC

θ

sinΦ(θ′)dθ′ +R(i) cosφ,

y(θ) = R

∫ θ

0
cosΦ(θ′)dθ′.
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Figure 8. Changing in the shell shape around the inner rod

At the point C the coordinates of the shell coincide with the coordinates of the rod. The thickness of the
shell is neglected for simplicity. This requirement is equivalent to the equation∫ θC

0
cosΦ(θ′)dθ′ = δ sinφ. (37)

Along the arc where the shell adjoins to the rod, the external pressure is compensated by the reaction
of the rod along the direction n. Hence, at the point C we have

qn = γ0

(
h

R

)2 dκ
dθ

∣∣∣∣∣
θ=θC

= 0,

i. e. κ(θC) = a. It is equivalent to
π

m
(1 − δ) + δφ = 4K(k)√

AB
. (38)

Eqs. (36)–(38), (14) define the parameters a,b,a1,φ as functions of |p| and m.
Fig. 9 shows several solutions that illustrate the change in the shape of the shell on the rigid rod

under the external pressure. The left figure represents the moment of contact for the shell and the rod,
the right figure represents the limit state of the shell.

Figure 9. Changing in the shape of the shell around the rigid rod, m = 3

When the difference in the radii of the inner rod and the shell is great, then rigid ribs are formed on
the side surface of the shell, which are not removed even when the pressure increases further. Generally,
using only an inner rod does not always allow to reshape the shell as intended.

3.3 The Shell under Two Constraints

The main goal is processing tube billets into hollow articles of variable diameter along the shell axis by
the hydrostatic pressure.

In principle, presence of the round rod inside the shell allows to decrease the radius of the cross
section. However, the rigid ribs remain on its surface.
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Introduction of an additional bounding cylinder allows not only to stabilize the shape of the shell
with the wave-like profile but also control changing in the shape near the smoothed crests on the shell
surface within some range of the pressure. This opportunity is only available, if the geometric parameters
of the experimental device are fit in such a way, that the shell being deformed first touches the inner
rod and after that the outer cylinder. Below we will analyse the change in the shell shape under two
constraints within the framework of the proposed model.

Let a rigid rod of the radius R(i) be placed inside the shell, and the shell be placed inside a hollow
cylinder of the radius R(e), with R(i) < R < R(e) and axes of the rod, the shell and the cylinder coinciding
with the Oz axis (Fig. 10). In a certain sense this case is a combination of the previous ones.

φ

A

B

D

x

y

O ψ

π
m

CC

R
(e)

R(i)

Figure 10. The scheme of changing in the shell shape under two constraints

As the pressure p is increased further, the shell changes in its shape, gets m bulges. After the pressure
p having reached a certain value p i the shell touches the inner rod at the point D. Once the pressure
reaches some value pe, the shell touches the outer arbor at the point A. Generally, p i ̸= pe and the values
p i and pe depend on the radii R(i) and R(e). Because of the symmetry of the problem, the part of the
middle line ABCD is sufficient to consider the state of the whole cross section. For the natural parameter
s the part ABCD corresponds to [sA, sD] = [0, πR/m].

For the analysis below it is convenient to use the dimensionless variables

s = Rθ, θA = 0, θD = π

m
,

κ = Rκ̃,

δ = R(i)

R
, ξ = R(e)

R
.

The angle φ is measured off from the Ox axis and defines the arc length of the inner rod the part
CD of the cross section adjoins to. On one hand, the length of the part CD has the form

|CD| = δ
( π
m

− φ
)
.

On other hand, the length of the part CD can be expressed in terms of the parameter θC

|CD| = π

m
− θC .

These equations relate the parameter θC to φ:

θC = δφ+ (1 − δ) π
m
.

As in the section 3, the angle ψ defines the arc of the outer arbor the part of the cross section AB
adjoins to, with |AB| = θB = ξψ. In this case, for the phase Φ(θ) Eq. (31) holds true as well. From
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the condition for the tangential vector to the surface of the shell section to coincide with the tangential
vector to the surface of the rigid rod at the point C we have

φ = Φ0(θC) − Φ0(θB) + ψ. (39)

The coordinates of the points of the free part BC can be chosen in the form (see Fig. 10)

x(θ) = R

∫ θC

θ

sinΦ(θ′)dθ′ +R(i) cosφ, y(θ) = R

∫ θ

θB

cosΦ(θ′)dθ′ +R(e) sinψ.

At the point C the ordinate of the inner rod coincides with the ordinate of the cross section:∫ θC

θB

cosΦ(θ′)dθ′ + ξ sinψ = δ sinφ. (40)

At the point B the abscissa of the inner rod coincides with the abscissa of the cross section:∫ θC

θB

sinΦ(θ′)dθ′ + δ cosφ = ξ sinψ. (41)

At the point C the external pressure is compensated by the reaction of the rod along the direction
n, hence for the shear force qn we have qn(θC) = 0. Thus, taking into account (9) we conclude that the
point C minimizes the curvature:

κ(θC) = a

or
4K(k)√
AB

= θC (42)

Eqs. (39)–(42), (14) constitute a closed system of transcendent equations for the unknown parameters
a, b, a1, φ, ψ as functions of the external pressure p, the number of the bulges m and the radii R(i) and
R(e). Fig. 11 shows a number of stages of the deformed shell. The left figure corresponds to the moment
of touching the rod by the shell. This configuration satisfy Eqs. (36) –(38), (14). As the pressure p
is increased further, the shell envelops the rod and touches the outer arbor (the center figure). The
third figure represents the limit state of the constrained shell. The second and third states satisfy Eqs.
(39)–(42), (14)

Figure 11. Changing in shape of the shell under two constraints (δ = 0.9, ξ = 1.1): the left figure represents the
moment when the shell touches the inner rod, the center figure represents the moment when the shell touches
the outer arbor, the right figure is the limit state. The filled and hatched sectors denote increases of the angles
relatively the previous states

Numerical analysis shows, that the deformation of the shell under the hydrostatic pressure can be
steered with suitable choosing of the rigid constraints.

Fitting the radius of the outer arbor allows to limit the amplitude of the bulges of the deformed shell
and prevent the rigid ribs from emerging on the shell surface.
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Figure 12. Dependence of the maximal intensity of the stress S on the pressure for the shell under two constraints,
m = 3, δ = 0.95, ξ = 1.05.

As the pressure is increased the internal stress concentrates nearby the smoothed crests of the bulges .
This effect takes place within a narrower range of the pressure but is more considerable than for the shell
being only under the outer arbor (Fig. 12). Once the stress surpass the yield strength of the material,
the plastic flow will arise in the vertices of the crests. Then, the shell will get a new circular cross section,
which will be retained on reducing the pressure. Changing the radii of the outer arbor and the inner rod
along the axis allows to process a circular shell into an article of a variable diameter by the hydrostatic
pressure, the material and time expenses being minimal.

Deformation of the shells made of low-carbon steel under such constraints was studied in the experi-
ments of [1,2]. Comparatively thick metal shells for which h/R ≈ 0.12 − 0.2 holds true were considered
The length of every treated shell was 3–6 times greater the shell radius. During the experiments the shell
always lost the stability of the shape, with m = 3 bulges forming on the surface. Then, as the pressure
was increased the shell enveloped the inner rod. When the difference between the radii of the shell and the
rod was comparatively great, the ribs emerged on the shell surface. These ribs didn’t reduce with further
increase of the pressure. However, if the shell radius differed from the radius in the order (2.2. − 2.6)h,
then the shell slipped along the rod arc under certain pressure and got the cross section similar to a
square with smoothed vertices (m = 4). At the same time, the amplitude of the bulges decreased to a
value of the order (1.9 − 2.2)h. For producing empty billets with circular cross section, an external arbor
can be omitted when the amplitudes of the wave-like folds are not greater then 3d. The small amplitude
folds are eliminated during the plastic flow of the material, when the internal stress reached the yield
strength of the material at the crests of the bulges as the result of the pressure increase. However, when
the perimeter length of the shell cross section differs significantly from the one of the arbor, rigid ribs
arise on the shell surface. Then, a new approach is required to produce articles with smaller radii. Since
coming the shell into contact with the external cylinder slows down the rate of the shell deformation as
the pressure grows, introducing an additional external cylinder permits deliberate controlling the shell
change in the form even when the magnitude of deformation is large. Ultimately, in [1, 2] the circular
shell was processed into a specific hollow article, i.e. the steering head for a motorcycle, which has circular
cross sections with different radii.

In this paper we neglected the thickness h to simplify the analysis. Meanwhile, choosing the right
relation between the shell thickness and the gap between the constraints is an important point for
technological applications. Let us clarify the statement.

Let the amplitude of the bulges on the shell surface be equal ζh: R(e) = R + ζh. The limit state of
the shell that enveloped the rod has the folds with the thickness of the order 2h. The perimeters of the
shell and the rod are to differ by the value

2π(R−R(i)) = 2mh(ζ − 1).
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Consequently, for m = 4, ζ = 2 we find

R ≈ R(i) + 4h
π
, R(e) ≈ R+ 2h.

4 Methods of Numerical Calculations

Numerical analysis can be simplified by the substitution

a = −u+ v; b = −u− v. (43)

Then, Eqs. (16), (23), (14) take the form

π
√
AB = 4K(k)m; (44)

−(A+B)u+ (A−B)v
A+B

+ 1 + 2m [Λ(β, k) − 1] = 0; (45)

8|p|
γ0

(
R

h

)3

= 2u
(
a2

1 + v2) . (46)

Below we consider the coefficients A, B, β and the modulus k2 as functions of u, v. According to (46)
the value a2

1 can be expressed in terms of u, v and p̃ = 8|p|R3/(γ0h
3).

The reverse transform for Eq. (43) maps the domain of allowable parameters {(a, b) : b < 0, b < a <
−b, 0 ≤ k2 ≤ 1} in the first quadrant of the u − v plane (Fig. 13). The shape of the domain stays the

0 2 4 6 8 10
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2

4

6

8

u

v

10

NN

Figure 13. Domain of allowable values for u, v at p̃ = 8.5.

same in qualitative terms at any allowable p̃.
We solved the system of Eqs. (44), (45) for u, v with the Newton method. Here, the main issue

is finding the initial values u0, v0 for the iterative algorithm. Let’s note that the system (44), (45) is
solvable for pressure p̃lin + ε for any natural number m > 2, with p̃lin = m2 − 1, ε ≪ 1. According to (25)
initial values for u, v lie within a neighborhood of the point N = (1, 0) (Fig. 13). For a small enough ∆p̃
resulting u, v are a good initial approximation for the problem with the parameter p̃lin + ∆p̃. Iterating
solution of the Eqs. (44), (45) with the parameter p̃i = p̃i−1 +∆p̃i gives the initial approximation u0, v0
for any allowable pressure p̃ > p̃lin.

The problem (33), (34), (35), (14) for the shell constrained by the outer cylinder can be solved by
the Newton method as well. However, we need two stages to find out the initial approximation u0, v0,
ψ0 for the iteration algorithm. At the first stage we determine the pressure p̃T at which the shell comes
into contact with the outer cylinder. To do this, lets define the distance from the shell axis to the top of
the shell bulge (Fig. 4):

rA =
√
x2(θ) + y2(θ)

∣∣∣∣
θ=0

.
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According to (22), (24) the coordinates of the radius vector (1) are functions of u, v. Consequently rA

is a function of p̃. In the outset of the shell deformation rA(p̃) is monotonic, therefore we can determine
the segment within which this function reaches the value R(e) by means of increasing the pressure by a
suitable step ∆p̃. We solve equation

rA(p̃) = R(e)

by the bisection method and determine the pressure p̃T and corresponding solution uT, vT for the system
(44), (45). At p̃ = p̃T the parameters uT, vT and ψT = 0 satisfy the system (33), (34), (35). At the second
stage, we find the initial approximation u0, v0, ψ0 for this problem using iteration p̃i = p̃i−1 + ∆p̃i

beginning from the pressure p̃T.
For the problem of deforming the shell around the rigid rod, firstly, we find the pressure p̃t at which

the shell comes into contact with the inner rod in the point B (Fig. 8) and the roots ut, vt of the system
of Eqs. (44), (45). The algorithm for searching for these parameters is similar to the case above. The
values ut, vt obtained and φt = π/m satisfy the system (36)–(38) at p̃ = p̃t. Further, we find the initial
approximation u0, v0, φ0 for the problem with the parameter p̃ > p̃t using iteration over p̃.

The case of the shell subjected to two constraints (the outer hollow cylinder and internal rigid rod)
is a combination of the former and latter ones. In the first place, the problem of coming the shell into
contact with the rod is solved. Secondly, we use the solution of the problem of coming the shell into
contact with the outer cylinder as the starting point for searching for the initial approximation for Eqs.
(39)–(42) with a given parameter p̃.

5 Conclusion

In this paper, the influence of rigid constraints on the change in the shape of a shell subjected to the
hydrostatic pressure is studied. It is also shown that it is feasible to obtain the state of the shell with
a variable diameter along the generating line within a finite range of hydrostatic pressures. The use of
an additional outer cylinder turns out to be fundamentally important. Limiting the amplitude of bulges
by means of the cylinder allows one to avoid the emergence of rigid ribs on the shell surface. Besides,
the external constraint leads to the concentration of internal stresses near the tops of the bulges. As a
consequence, the external pressure value at which the shell takes a new circular shape can be decreased
in tens times. Using simple examples we analyzed the general patterns of technology for producing the
circular cylindrical shells into hollow articles of complex shape by the method of hydrostatic compression
with minimal time, energy and material costs.
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