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Abstract In this note we investigate the diffusive behaviour and the boundary conditions of DNA
nanodevices using the toe hold mediated strand displacement method. The goal is to extract the
basic principles governing the difference observed in diluted solution and in confined environment
where the devices are tethered on a DNA Origami. We note that the excluded volume interaction
between the two strands running in opposite direction must give a sub diffusive behaviour that can
lead to very long waiting times between jumps. When the Boundary Conditions generate a strong
asymmetry in the device, the probability to perform the logical operation, thus to remove the output
strand, is one. However, we envision unexpected marked differences between diluted solutions and
confined environment both for controlling the boundary condition and the sub diffusive behaviour.
These differences rise new questions on the interest to use the toe hold mediated strand displacement
method on DNA Origamis.

Keywords: DNA Nanotechnology, confined chemical reactions, DNA logical gate, DNA origami,
modular algorithm.

1 Introduction

DNA strands are key building units that boost and create innovative routes in the domain of nanotechnology.
Over the last three decades, the use of DNA strands has lead to several remarkable achievements. Triggered
by the Seeman vision in the early eighties [1,2], which we can shortly summarised as follow: the use
of DNA molecules must not be restricted to its primary genetic code function but used as any kind of
nanomaterial. Since then, many works have contributed to establishing firm strategies based on DNA to
conceive and fabricate a wealth of structures and functions. Among them, the most significant are the
folding of origami [3] and the DNA motor devices [4] that turn out to be fertile enough to design networks
of chemical reactions with a constructed rational approach [5,6,7,8,9,10,11,12]. The combination of DNA
origami and DNA motor devices gives the great opportunity to elaborate modular Boolean algorithm
based on ordered sequences of chemical reactions confined in an almost perfect topological arrangement
[13,14,15,16,17]. Numerous applications are envisioned especially those addressing nano-medecine and
environment [18,19].
One key feature motivating the present work is that life systems have to select molecules and ensure
robust functions in a crowded environment. This happens almost at any step, at the primary level of
gene expression with the appropriate selection of promoters in the network of transcription factors, in
the ribosomal machinery to select the right amino acid, in immunology where the T cells have to select
the pathogen among a large population of molecules in order not to kill the healthy cells, in an efficient
transfer of hormones and neurotransmitters to cells or synapse connections. Life systems have developed
numerous strategies like kinetics proofreading with square rate discrimination, delay time of integration,
use of selected bandwidth in a cascade of enzymatic reactions upon the action of a signal molecule,
allosteric functions and so on [20,21]. One interesting feature is the noticeable difference between hormones
and neurotransmitters. Both have the same kind of action, but, as quoted by Kandel and al [22], the
main difference is that hormones diffuse at random over the cells while neurotransmitters are confined in
space at the synapse connection, which makes the flow of information much more efficient. The effect
of the confinement is not understood, in particular the role of the fluctuations. Therefore, the study
of chemical reactions in confined space where the topological constraints are well set is of the utmost
interest. Beyond this philosophical introduction, there are growing technical efforts and new experiments
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that DNA nanotechnology affords. This is what we discuss here, our bottom line being a reductionist
approach that aims to extract some key features.
The important factor is the algorithmic structure with which the DNA structure and functions are
designed, those algorithms being based on the Watson-Crick (WC) pairing rules. Obviously, the use of
a simple algorithm allowing to conceive and to fabricate material structures and functions is in itself a
great progress. However, DNA strands are flexible polymers that don’t exactly behave as simple bits
(0,1) with which one would have been allowed to describe a cascade of chemical reactions using simple
Shannon rules. Even short DNA strands are quite complex objects made of a huge number of degrees of
freedom that can exhibit a great variety of conformational fluctuations. In this respect, the confinement
of interacting DNA strands creates new situations in which the fluctuations can play a leading role. The
confinement of chemical reactions provides several advantages; one is to restrict the flow of leaks and
unwanted cross talks; a second is to increase the speed of the computation. In both cases, these two
significant advantages increase the capacity and complexity of the computation and its robustness. To
exploite those advantages, we recently did work using DNA nanodevices tethered on origami templates
[23] using the toe hold strand displacement technique [24,25,26]. While it is a convenient way to construct
modular Boolean operations with a sequence of chemical reactions, it happens that the use of the strand
displacement in diluted and confined environment rises new questions.
The present work is an attempt to evaluate the gain we may have when the DNA nanodevices are confined
on DNA Origamis. The ratchet function of the DNA nanodevice is driven by the boundary conditions
and, because the whole process is a complex one, we divide the chemical reaction in three steps. A first
step in which the toe hold of the input binds the template of the gate; a second step is focused on the
competition between the input and the output strands that leads to an anomalous diffusion behaviour
and a third step shows how the boundary conditions can modify the kinetics competition between the
input and the output strands. The paper is organised as follow: in the first paragraph we introduce the
basic principles we need, in the second paragraph we discuss first the single file problem applied to the
DNA nanodevices then the different types of boundary conditions that can be engineered in diluted
solutions and when a DNA origami is used. Finally, we discuss the effect of the boundary conditions upon
the probability for the output to be removed from the gate.

2 Basic Principles

2.1 DNA Strand Displacement a Random Walk with Excluded Volume Interaction
between Walkers

We have to deal with a biased random walk with an excluded volume interaction between particles, where
the particles are not simple beads but flexible short chains. This is a complex problem and the reason
why we adopt a reductionist approach, with which we hope we could extract some basic principles. Based
on the numerous previous works [24,25,26] and our recent experimental results and analysis investigating
the behaviour of DNA nanodevices on origamis [23,27], the present work is an attempt to improve our
understanding of the head motion of a single strand pushing and removing another almost identical one
that already forms a duplex with its complementary single strand. Such a chemical reaction can be seen
as a race competition between two identical, or slightly different runners, running in opposite direction
along a 1 dimensional energy landscape.
In the simplest case where no competition takes place, it is commonly accepted that the two strands
DNA hybridisation behaves as a Markov process. For short strands, the average square excursion of the
head of the duplex formation is given by a random walk (see the simple picture displayed in figure 1) and
the diffusion law at long time is : 〈

L2〉 = Deffτ (1)
where Deff is an effective diffusion constant accounting for the random walk process. As a consequence
the time needed to move up to a length L corresponding to N sites scales as:

τ = N2τK (2)

where τK is the Kramer escape time [27] .
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Figure 1. (a) Sketch of the hybridisation of two complementary single strands. The motion of the head of the
hybridisation process can be described as the hoping of a bead out of a potential well. The hoping time is an
exponential function of the barrier height and is given by the Kramer’s rule. (b) Holiday junction and scheme of
the branch migration. The branch migration can take a much longer time, several orders of magnitude, than that
of a simple hybridisation process.

When a strand displacement takes place, this simple picture is no longer a correct one, the two strands
walking along the same track collide each other (see figure 2). The interaction between the two particles
affects the Brownian diffusion. The effect of the interaction between Brownian particles has been for long
studied with the central question asking whether the law or else only the diffusion constant is modified.
One can intuitively understand that at two or three dimension an excluded volume interaction between
particles would not modify the diffusion law. At two or three dimension, the particle will always have
paths to avoid the occupied sites so that the usual diffusion law at long time still applies. It is also obvious
that at one dimension it becomes a complete different matter, the excluded volume interaction and the
collisions will have a dramatic effect. At one dimension a particle cannot overpass another particle neither
can move into an already occupied site. Leaving aside prefactors such as the dependence on the fraction
of the occupied sites, at long time or for large excursion the diffusion law is modified with a significant
slow down leading to a sub-diffusion behaviour [28,29]:〈

L2〉 = Deffτ
1/2 (3)

or else √
〈L2〉 =

√
Deffτ

1/4 (4)

which gives
τ = N4τK (5)

The overall time spent to displace a strand becomes much greater than the one needed to propagate a
simple hybridisation process. For practical purpose let’s start with a Kramer escape time τK of 10−5-10−6

s. The Kramer escape time τK gives the order of magnitude of the hoping rate for a particle located in a
site to either escape to the left or to the right nearby sites. For a strand displacement of length 10 to 20
bp, e.g. N=10 to 20 sites, the experimental results give a typical migration time of about τ= 1 second
[24]. Therefore, the chemical reaction that removes the displaced strand from its track is achieved within
a time τ = MτK , where M is the total number of attempts of left and right jumps between neighbouring
sites. With τ= 1 second, we obtain M=105-106. With a number of sites N=20, the number of jumps M
we calculate is roughly the value we get with a N4 law dependence. Despite the fact that everything
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happens at a molecular level with a set of small barrier heights of only a few kBT, this unusual very long
time must be a typical value when two strands walk along the same track in opposite direction.

2.2 Contact Events and Flow of Output Strands

The study of a Brownian motion, in which a steric interaction between particles becomes a relevant
process, is a difficult task. It is even worse when we have to consider the competition between two flexible
single strands walking on the same track in opposite direction. Therefore, our main purpose is to find
a method that evidences the difference in the chemical reaction paths when the chemical reactions are
performed in diluted solutions and in a confined environment. A sketch of the chemical reaction involving
a toehold DNA strand displacement is displayed in figure 2. In addition, the use of a DNA origami as
a template for the DNA devices contains in itself new parameters that increases the complexity of the
system. As a consequence, it is worth dividing the overall chemical reaction in several elementary steps,
each of them being as simple as possible (see figure 3 ).

Figure 2. Sketch of a chemical reaction of a DNA nano device based on the forward motion of a DNA strand
initiated by a toehold DNA sequence (input). Input with its toehold (red) and common sequence with the output
(blue) that displaces the output strand. Possible intermediate states are sketched.

First, one has to calculate the probability per unit time and per mole that the input strand hits the
target. This rate gives an upper bound of the bimolecular rate constant kon. Once the input strand has
hit the target, question rises about its ability to perform the whole chemical reaction. The product of
the chemical reaction is an output strand, which means the hybridisation of the toe hold must be stable
enough in order to be able to initiate the competition between the input and the output strands running
on the same 1-Dimensional track. This latter process is where the difficulty rises. A simplified approach
that may grasp some of the important features is to describe the whole process as an isothermal ratchet
and to use a Fokker Planck Equation (FPE). We showed recently that the FPE is a useful tool for this
stochastic problem, especially when one wants to evaluate the effect of the boundary conditions and of
the asymmetry of the device [27].

In diluted solution, the rate of hitting will be governed by a diffusion process and is given by:

kdiffon = DφNav = 108M−1s−1 (6)

with D= 10−5 cm2/s the diffusion constant, φ=10 nm the size of the molecule and Nav the Avogadro
number. This rate gives an upper bound value in diluted solution, which is about two orders of magnitude
greater than those given by the experiments kexpon =106M−1s−1. This large difference means that we need
several nucleotides to form a stable duplex in order to ensure that the collisions between complementary
strands are able to initiate the chemical reaction. There is a balance between the rate of collisions at a
given concentration c of reactant Dφc and the dissociation rate. The rate of dissociation of one nucleotide
scales as the reciprocal of the Kramer’s escape time, which gives k1

dissoc=105 − 106s−1, and with n
nucleotides the rate of dissociation decreases as kndissoc=106s−1exp−(n−1)Ul/kBT , where Ul=3kBT is the
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Figure 3. Sketch of the three steps describing the toe hold strand displacement in diluted and confined environment.
The gate (or target) is represented with a parallelogram. 1-The blue arrows mimic the Brownian motion (in
diluted solution) of the input strand hitting the target. 2-The wavy black line represents an energy landscape
on the gate with disordered barrier heights between sites generated by the collisions between strands. 3- The
red arrows mimic the Brownian motion of the output strands when it is removed from the gate. (a) In diluted
solution both strands can diffuse away from the target. (b) In confined structures the input strand is tethered on
the origami and is forced to go back on the target.

binding energy of one nucleotide. Therefore, with 3-4 nucleotides the dissociation rate decreases by two
orders of magnitude. These dissociation rates have to be compared with the rate of collisions without
which nothing can happen. Let’s consider a box of molecular size φ=10 nm, with a concentration c=10nM
the mean number of molecules flowing through the box within one second is N=Dφc=60 s−1. But the
target itself is also a random variable passing through the same box with the same distribution and,
saying that the collision does not bear any memory effect at least for time greater than 10−6 s, we get the
result that the total number of collisions in the box is N2 = 3600 per second, which falls within the rate
of dissociation for 3-4 nucleotides. In other words, when the two strands collide the hybridisation rate of
3-4 nucleotides just balances the dissociation rate. Let us assume that each contact bears a probability
close to one that only one base pair forms. From the ratio between the colliding rate and the escape
rate one gets a weighting probability of pHyb = 10−2 for a complete reaction to occur. Therefore, we end
with the result that the effective rate of hybridisation is kexpon =pHyb x kdiffon = 10−2kdiffon , which is a value
quite close to the experimental one.

3 DNA Strand Displacement an Isothermal Ratchet with a Complex
Biased Forcing

3.1 Single File Problem and Varying Boundary Conditions

The strand displacement is a one dimensional random walk problem with short range interaction between
particles. However, contrary to a common single file problem, there is a possibility that one of the two
strands can be ejected from the track. As we may expect, the process of removing a strand has a cost,
once an input strand is fixed at the template, the whole system made of the three strands is out of

212 Journal of Advances in Nanomaterials, Vol. 2, No. 4, December 2017

JAN Copyright © 2017 Isaac Scientific Publishing



Figure 4. Scheme of the excited states involving two strands on a rigid one-dimensional template (the gate) as it
may occur on DNA origamis.

Figure 5. Scheme of the excited states involving two strands on a flexible one-dimensional template (the gate) as
it may occur in solution.

equilibrium until one of the two complementary strands has been ejected. In general, the collisions between
particles used to be the process that brings back an out of equilibrium state to the equilibrium one. In
the present case, a complete different situation arises where the hybridisation of the toe hold sequence
forces the two strands to collide each other. The collisions between the two strands generate a large
number of configurational states that cannot be enumerate. One way for understanding the main effect of
those out of equilibrium configurations is that they change the barrier height controlling the hopping
rate between sites. This non trivial statement may be understood another way around, the collisions
heat the system such that a few complementary nucleotides reach a continuum of excited states where,
for a short time, they are no longer paired together. A simple scheme illustrating the structure of the
excited states is shown in figures 4 and 5. Because a great number of configurations can be generated
with different consequences on the structure of the excited state, it is a safe assumption to consider a
continuous variation of the nucleotides stability with an additional free energy varying from 0 up to nUl,
where n is the number of nucleotides involved in the neighbourhood of the head migration. Note that
the probability distribution of those excited states is largely unknown, which forces us to employ such a
crude representation to get clues on a possible generic behaviour. Furthermore, we assume those excited
states are equally distributed between the two strands so that the structure remains symmetric at the
local scale and no biased effects are expected. However, when one of the two ends of the track is reached
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and that different boundary conditions apply, significant changes of the device properties are expected.

Using the FPE [27], we showed how the boundary conditions may have a major effect (see figure 6) on
the properties of the device and can be further used to evaluate the different behaviours between tethered
devices on DNA origamis and those in diluted solutions. In diluted solution the device can be perfectly
symmetric as it happens with the seesaw gates [9], while when the device is tethered on origamis, a highly
asymmetric structure is generated through the hybridisation of a fraction of the strands on the origamis
[23]. A highly asymmetric structure generates several interesting results, for instance we got the main
result that whatever the toe hold strength is the logical operation always succeeds [27,30] (see figure 6).

Asymmetric structures are also obtained in diluted solution when the toe hold is large enough and
only set on one side of the gate (figure 2). When the toe hold is long enough it leads to something like a
reflecting condition, so that whatever the structure of the excited states, it will not be able to force the
input strand to leave the device. On the other side, the end of the output, the excited states will induce a
dramatic effect, due to the collisions the output strand may be removed without the need to reach the
ultimate, rightmost site (see scheme in figure 7 and the next paragraph).

Figure 6. Variation of the escape time as a function of the toe hold strength with for the black curve the reflecting
(left side of the device) and absorbing (right side of the device) conditions corresponding to devices tethered on
origamis, and for the red curve absorbing condition at both ends corresponding to the case of diluted solution
(from [27]). Even with a very weak toehold strength, the DNA nanodevice tethered on a Origami is still able to
work.

3.2 Boundary Conditions Induce the Isothermal Ratchet Functions

The toe hold length provides a sequence of nucleotides where no competition between strands takes
place. This key feature produces an asymmetry of the device, which is described as the result of different
boundary conditions. A marked difference between the two ends of the gate occurs when on one side
there is a reflecting condition and on the other side an absorbing one (see figure 7). The influence of such
a different boundary conditions has to be analysed with the fact that the two strands collide. Let’s start
with the equation 5 or else the number of trials M with τ = MτK , from which we calculated M=105-106.
This simple calculation assumes there is an average trapping time per site of the order of τK . This
approximation is of interest to get an order of magnitude of the total number of jumps M, but is not
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correct. Because the trapping time at any site depends on the colliding configurations between strands,
this trapping time is a random variable the distribution of which being independent of the location along
the track. Therefore, rather than writing τ = MτK , it is worth writing a more general expression in which
no restriction is expressed. The total time after M jumps is now given by:

Figure 7. boundary conditions and toe hold (red), the common sequence between input and output strands are
blue.

τ =
M∑
i=1

τi (7)

At any site, the waiting time τi is a random variable with a probability distribution p(τi). The value
of the waiting time is no longer related to the hopping rate over a barrier height of a few kBT . The
waiting time now depends on the interaction between strands and may reach a much higher barrier height
decreasing the probability for a jump to succeed (see figure 4 where the colliding states are represented as
equivalent to non pairing states). Unfortunately, such a reasoning also remains a crude approximation.
The interaction between strands generates a distribution of activation energies that in turn generates the
distribution of waiting times and we don’t know anything about this distribution of activation energies.
The only thing we can say is that they all behave as random variables and that the displacement of the
output strand can be reasonably described as the result of a large number of jumps from site to site with
uncorrelated random waiting times at each site. This type of disorder with random waiting times at each
site also leads to a sub diffusive behaviour which is not unlike the one given by equation 4 [31,32].
In solution, the asymmetry comes from the fact that with a toe hold stable enough, the device is locked
at that side (left side in figures 7), from which no strand can escape. Keeping in mind two or three
nucleotides would not be able to lock the device, let’s take n=5 as the lower bound number below which
the toe hold strength would not provide an efficient forcing. Then, the strength of the asymmetry can be
understood as follow: when the strands move toward the right end side, the stability of the toe hold gives
an upper bound time τth to the set of waiting times τi. Therefore, what we only need is to evaluate the
longest waiting time one can have when the two interacting strands run altogether. If this longest waiting
time is smaller than the toe hold one τth, then the reflecting condition applies and the probability for the
output strand to be removed is 1, keeping in mind it can take quite a long time to reach the exit.
Before we estimate the balance between the two ends of the device, it is worth noting that the collisions
not only leads to a sub diffusive behaviour but also produce an entropy that drives the device out of
equilibrium. Those collisions reduce the free energy of the complementary strands lowering the stability
of the device (something similar to the nucleation of loops decreasing the melting temperature of a
double strands). When the two interacting strands are located at the proximity of the right exit side, the
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degradation of the free energy can lead to dramatic effects increasing the speed to sort out the output
strand. Say the length of the toe hold is n and α the number of nucleotides below which the hybridisation
is not stable, we are interested in the longest waiting time when the two competing strands are close to
the right end, say at a distance m from the end. At the location m, an upper bound of the residence time
of the output strand is given by:

τm = τ0exp[(m− α)Ul] (8)
This time is much larger than τK , the first time we derive using the Kramer’ description [27]. If τm is

smaller than τth = τ0exp[nUl], then the output strand is more likely to be removed following a cascade of
events. Let’s consider a directed motion toward the exit. Because the jump events occur at random, the
probability to reach the end of the device is the product of the probabilities per unit time of events to
happen at each site. An upper bound of the time required to reach the end, or else the probability for the
output to diffuse away from the gate when the head is located at a distance m from the exit will be :

Pexit ≈ (τm)−(m−α) = τ
−(m−α)
0 exp[−(m− α)2Ul] (9)

4 Discussion

Equations 8 and 9 tell us the migration time can be very long until we reach the proximity of the end
of the device where the absorbing condition takes place. Close to the exit, a compressed exponential
behaviour can lead to dramatic change since the output strand can diffuse away without the need to reach
the ultimate location of the last paired nucleotides. This behaviour is similar to the one observed on the
ageing effects of life systems and survival probability giving an estimate of the maximum age a human
can reach [33]. It is also similar to the expected non exponential behaviour of the folding of proteins [34].
From the above analysis, the two strands of the DNA nanodevice can be trapped for quite a long time at
the beginning and in the middle of the device. The device spends most of the time in moving the strands
back and forth until they both reach the proximity of the absorbing end at a time that belongs the tail of
the distribution. Then an abrupt change occurs and the output strand diffuses away.

In a recent paper we reported experimental results of DNA computation with DNA nanodevices
tethered on origamis [23]. The aim was to amplify an input signal with four output gates and fuel strands.
We showed that the devices’ yield was low, which was recently confirmed [30,35]. As claimed at the
beginning, the use of confinement gives several advantages, however with the toe hold strand displacement
technic it rises a major issue upon the interaction between strands. Because the template, the gate
output structure, is more or less rigidly fixed on the origamis it may induce a different regime of colliding
interactions between strands than those in diluted solution where the template can adopt more flexible
conformations [36]. If stronger colliding interactions are more likely to happen when the devices are
tethered on origamis, then the time spent on the device, without removing the output, can reach higher
values, lowering the gain due to the confinement. In addition, a question rises upon the efficiency of the
toe hold hybridisation on origamis. It may as well be weakened, thus decreasing the asymmetry of the
reaction path and consequently the efficiency of the device.

5 Conclusion

When one wants to conceive a network of Chemical Logical Gates, we need to use chemical species as
the outputs that bear the required information. Therefore the strand displacement technique is, at least
at this very moment, the best we have in hands to perform a set of logical boolean like operations. An
alternative, for instance using loops based on the molecular beacon technic, hardly will be able to produce
chemical species we can further use to trigger another action. In this paper we have discussed the basic
principles at work when the toe hold strand displacement technique is used. Following this analysis we
find that while the use of confined devices would provide a great advantage, it may also lead to a different
set of colliding interactions with respect to the ones occurring in diluted solution. In other words, the
dissipation of the working device might also be significantly different in confined environment, which may
lead to severe restriction we have to take into account when designing devices tethered on Origamis.
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