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Abstract This paper studies the problems of variable selection and estimation in the additive
models with missing response at random. Based on the centered spline basis function approximation,
we propose two new imputed estimating equation methods to implement the variable selection for the
additive models with missing response at random by using the smooth-threshold estimating equation.
Two new imputed methods can select the significant variables and estimate the unknown functions
simultaneously. The proposed methods not only avoid the problem of solving a convex optimization,
but also reduce the burden of computation. With the proper choices of the regularization parameter,
we show that the resulting estimators enjoy the oracle property. The data driven method is used
to choose the tuning parameter. A numerical study is analyzed to confirm the performance of the
proposed methods.

Keywords: Additive model, smooth-threshold estimating equations, variable selection, missing
data, oracle property.

1 Introduction

In this paper, we consider the following additive model:

Yi = µ+
p∑
l=1

ml(Xil) + εi, i = 1, · · · , n, (1)

where Y is the response variable, X = (X1, · · · , Xp)τ is a p dimensional vector of the predictor variables,
µ is an unknown constant, and m(X) =

∑p
l=1 ml(Xl) with the unknown nonparametric functions ml(Xl),

whereXl is the lth component ofX, l = 1, · · · , p. ε is model error with mean zero and variance σ2. Without
loss of generality, we assume that the estimation of m(X) =

∑p
l=1 ml(Xl) is conducted on a compact

support, and let the compact set be χ = [0, 1]p. We further also impose the condition E [ml(Xl)] = 0
which is required for identifiability of model (1). Let r = 1 if Y is observed and r = 0 if Y is missing. The
missing mechanism associated with the missingness of Y is characterized by the conditional distribution
of r given X, which is assumed to satisfy

P(r = 1|X, Y ) = P(r = 1|X) = π(X,η) = exp{(1,Xτ )η}
1 + exp{(1,Xτ )η} , (2)

where π is a known function. In this paper, we assume that π is logistic function, η can be consistently
estimated by the complete data. Recently, some researches had studied the problems on the statistical
inference for model (1). For example, You, Chen and Zhou [1] considered the estimation and goodness-of-fit
test of the additive model with measurement error in covariates. Wang and Yang [2] adopted the spline
backfitting kernel method to estimate the unknown component functions, and established the asymptotic
properties. Opersomer and Ruppert [3] proposed the local linear smoothing method to make inference
for the additive model. Xue [4] proposed a regularized estimation procedure for variable selection that
combines the basis function approximation with the SCAD penalty. Wu and Xue [5] studied the model
detection for the additive models with longitudinal data. In addition, some variable selection methods
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were proposed to study model (1) under the complete data, such as COSSO (Lin and Zhang [6]), SpAM
(Ravikumar et al. [7]), gamsel (Chouldechova and Hastie [8]), and among others. It is very difficult for
the variable selection with missing data using the penalty strategy.

In this paper, we study the problems of variable selection and estimation in the additive model
(1) with missing response at random. Based on the centered spline basis function approximation, we
propose two new imputed estimating equation methods to estimate the component functions using the
smooth-threshold estimating equation proposed in Ueki [9]. The variable selection method based on
the smooth-threshold estimating equation can avoid the convex optimization of the penalized variable
selection procedure, and has been extended to some models, such as Li et al. [10], Zhao and Li [11], Lv et
al. [12] and Geronimia and Saportab [13]. In the present paper, based on the marginal imputed estimating
equation and the maximum correlation imputed estimating equation, we define two smooth-threshold
estimating equations to study model (1) with missing response at random. Two methods can automatically
select the important variables in the model, while simultaneously estimate the nonzero functions. The
proposed methods can yield the sparse solutions, avoid the problems of solving convex optimization and
reduce the burden of computation. Some asymptotic properties are established under some regularity
conditions, and the simulation studies are carried out to illustrate the efficacy of the proposed methods.

The rest of the paper is organized as follows. In Section 2, we introduce our methods, study the
asymptotic properties under some regularity conditions and propose the data driven method to select the
tuning parameter. The simulation studies are carried out to illustrate the proposed methods in Section 3.
The technical details are presented in the Appendix.

2 Methodology and Asymptotic Properties

2.1 Estimation

We approximate the nonparametric functionsml(·)’s by the centered B splines basis. Let B(x) = {Bs,l(xl) :
1 ≤ l ≤ p, 1 ≤ s ≤ J} is a basis system, where x = (xl)pl=1, J = K + q + 1, K is the number of interior
knots and q is the order of B spline basis. The equally-spaced knots are used in this paper for the simplicity
of proofs. Other regular knot sequences can also be used with similar asymptotic results. Suppose that
ml(·) can be approximated by the spline basis functions, that is

ml(x) ≈ msp
l (x) =

J∑
s=1

βslBs,l(x), l = 1, · · · , p. (3)

Substituting (3) into model (1), we can get

Yi ≈ Bτ
i β + εi, i = 1, · · · , n, (4)

where β = (µ, β11, · · · , βJ1, · · · , β1p, · · · , βJp)τ is the collection of the coefficients in (3), and Bi =
(1, B1,1(Xi1), · · · , B1,J (Xi1), · · · , Bp,1(Xip), · · · , Bp,J (Xip))τ . Thus, model (4) is a standard linear regres-
sion model, and we note that each ml(x) is characterized by (β1l · · · , βJl)τ . Therefore, we adopt the
imputed estimating equation as follows

n∑
i=1

φ̃
(I)
i (β,Xi) =

n∑
i=1

{
riφi(β) + {1− ri}mφ(β,Xi)

}
= 0, (5)

where φi(β) = Bi(Yi −Bτ
i β), and mφ(β,x) = E{φi(β)|Xi = x} is a function vector of p-dimensional

variable x. Then we will suffer from the curse of dimensionality to estimate the function mφ(β,x). To
overcome this problem, a new marginal imputation (MI) is used to solve the following estimating equation

n∑
i=1

φ
(MI)
i (β,Xi) =

n∑
i=1

{
riφi(β) + {1− ri}m̂(MI)

φ (β,Xi)
}

= 0, (6)
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where m(MI)
φ (β,x) = 1

p

p∑
l=1

E{φi(β)|Xil = xl} can be estimated by

m̂
(MI)
φ (β,x) = 1

p

p∑
l=1

n∑
i=1

Wli(xl)φi(β),

where Wli(x) = riKhl
(Xil − x)/

∑n
j=1 rjKhl

(Xjl − x), Khl
(·) = h−1

l K(·/hl), K(·) is a kernel function,
and hl is a bandwidth, l = 1, 2, · · · , p. By solving the marginal imputed estimating equation (6), we can
obtain the estimator β̂(MI) =

(
µ̂(MI), β̂

(MI)
11 , · · · , β̂(MI)

J1 , · · · , β̂(MI)
1p , · · · , β̂(MI)

Jp

)τ
of β. Thus, we can obtain

the estimator of function ml(·) as follows

m̂
(MI)
l (x) =

J∑
s=1

β̂
(MI)
sl Bs,l(x), l = 1, · · · , p. (7)

Since the above proposed procedure needs to select h1, · · · , hp with p bandwidths and estimate
m1(x1), · · · ,mp(xp) with p unknown functions, this will lead to the heavy computational burden to
implement this procedure. So we propose a simple method called as the maximum correlation imputation
method (MRI). We first calculate the correlation coefficients ρl = cor(Y,Xl), l = 1, · · · , p, and choose u
by maximizing the correlation coefficients as follows

u = arg max
1≤l≤p

ρl.

Thus, we can construct the following maximum correlation imputed estimating equation:
n∑
i=1

φ
(MRI)
i (β, Xiu) =

n∑
i=1

{
riφi(β) + {1− ri}m̂(MRI)

φ (β, Xiu)
}

= 0, (8)

where m̂(MRI)
φ (β, Xiu) is the consistent estimator of m(MRI)

φ (β, x) = E{φi(β)|Xiu = x}, which can be
estimated by the nonparametric smoothing methods. The estimator is defined as

m̂
(MRI)
φ (β,x) =

n∑
i=1

Wui(x)φi(β),

where Wui(x) = riKhu
(Xiu − x)/

∑n
j=1 rjKhu

(Xju − x), Khu
(·) = h−1

u K(·/hu), K(·) is a kernel function,
and hu is a bandwidth. By solving the estimating equation (8), we can obtain the estimator β̂(MRI) =(
µ̂(MRI), β̂

(MRI)
11 , · · · , β̂(MRI)

J1 , · · · , β̂(MRI)
1p , · · · , β̂(MRI)

Jp

)τ
of β. Similar to (7), the estimator of functionml(·)

is defined by

m̂
(MRI)
l (x) =

J∑
s=1

β̂
(MRI)
sl Bs,l(x), l = 1, · · · , p. (9)

It is easy to see that this procedure will reduce the computing burden once we can obtain u by
maximizing the correlation coefficients. Then we only need to choose a bandwidth hu to estimate the
nonparametric function m(MRI)

φ (β, x).

2.2 Variable Selection

In this subsection, we consider the problem of variable selection to select the important functional
predictors for the additive model (1) with missing response at random. Motivated by the idea in Ueki [9]
and Li et al. [10], we use the smooth-threshold estimating equations to perform the variable selection.
Based on the marginal imputed estimating equation (6) and the maximum correlation imputed estimating
equation (8), we define two smooth-threshold estimating equations as follows, respectively

(IpJ −4)
n∑
i=1

φ
(MI)
i (β,Xi) +4β = 0 (10)
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and

(IpJ −4)
n∑
i=1

φ
(MRI)
i (β,Xi) +4β = 0, (11)

where IpJ is the pJ-dimensional identity matrix and 4 = diag{δ1, · · · , δ1, · · · , δp, · · · , δp} is the pJ × pJ
diagonal matrix. Note that ‖βk‖ = 0 if δk = 1, hence (10) and (11) can yield the sparse solution. In
order to finish the variable selection, we first need to choose the threshold parameters δk, k = 1, · · · , p
using some data-driven criteria. We choose the threshold parameters as δ̂k = min{1, λ/‖β̂(0)

k ‖}, where
β̂

(0)
k is the initial estimator of βk, and λ is the tuning parameter. β̂(0)

k can be obtained by solving the
marginal imputed estimating equation (6) and the maximum correlation imputed estimating equation (8),
respectively. In Subsection 2.4, we will provide the data driven method to select the tuning parameter
λ. Thus, we can obtain the following two estimating equations by replacing 4 by its estimator 4̂ =
diag{δ̂1, · · · , δ̂1, · · · , δ̂p, · · · , δ̂p} in (10) and (11), respectively

(IpJ − 4̂)
n∑
i=1

φ
(MI)
i (β,Xi) + 4̂β = 0 (12)

and

(IpJ − 4̂)
n∑
i=1

φ
(MRI)
i (β,Xi) + 4̂β = 0. (13)

By solving the estimating equations (12) and (13) respectively, we can obtain the estimator of β,
and we define the estimator of β as β̂(MIVS) and β̂(MRIVS), respectively. Thus, we can obtain the two
estimators of function ml(·) as follows, respectively

m̂
(MIVS)
l (x) =

J∑
s=1

β̂
(MIVS)
sl Bs,l(x), l = 1, · · · , p (14)

and

m̂
(MRIVS)
l (x) =

J∑
s=1

β̂
(MRIVS)
sl Bs,l(x), l = 1, · · · , p. (15)

2.3 Asymptotic Properties

In this Subsection, we will study the asymptotic properties of the estimators defined by (7), (9), (14)
and (15). Let m0

l (·) be the true function of ml(·), and corresponding true value of β is denoted by β0.
Without loss of generality, we assume that m0

l (·) ≡ 0, l = d + 1, · · · , p and m0
l (·), l = 1, · · · , d are all

nonzero components of m0(·). We will provide the main theorems as follows.

Theorem 1. Suppose that the regularity conditions (A1)–(A5) given in the Appendix hold and the
number of knots K = Op(n1/(2r+1)). As n→∞, then the estimators defined by (7) and (9) satisfy the
following results

‖m̂(MI)
l (·)−m0

l (·)‖ = Op(n−r/(2r+1)), l = 1, · · · , p

and
‖m̂(MRI)

l (·)−m0
l (·)‖ = Op(n−r/(2r+1)), l = 1, · · · , p,

where r is defined in Condition (A4) in the Appendix.

Theorem 1 implies that the estimators defined by (7) and (9) of the unknown functions achieve the
optimal convergence rate. The following theorem gives the convergence rate of the estimators defined by
(14) and (15) based on two variable selection procedures.
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Theorem 2. Suppose that the regularity conditions (A1)–(A5) given in the Appendix hold and the
number of knots K = Op(n1/(2r+1)). As n→∞, then the estimators defined by (14) and (15) satisfy the
following results

‖m̂(MIVS)
l (·)−m0

l (·)‖ = Op(n−r/(2r+1)), l = 1, · · · , d

and
‖m̂(MRIVS)

l (·)−m0
l (·)‖ = Op(n−r/(2r+1)), l = 1, · · · , d.

Theorem 2 implies that the estimators defined by (14) and (15) also achieve the optimal convergence
rate if the subset of true zero coefficients are already known by choosing the proper tuning parameters.
Under some regularity conditions, we show that such consistent estimators must possess the sparsity
property, which is stated as follows.

Theorem 3. Suppose that the regularity conditions (A1)–(A5) given in the Appendix hold and the number
of knots K = Op(n1/(2r+1)). If λ→ 0 and nr/(2r+1)λ→∞ as n→∞, with probability tending to 1, then
the estimators defined by (14) and (15) must satisfy m̂(MIVS)

l (·) ≡ 0 and m̂(MRIVS)
l (·) ≡ 0, l = d+1, · · · , p.

Remark 1. Invoked by Theorem 2 and Theorem 3, it is clear that by choosing the proper tuning parameter,
our variable selection procedures are consistent, and the estimators of coefficient functions achieve the
optimal convergence rate if the subset of true zero functions is already known.

2.4 Tuning Parameters Selection

To implement the variable selection, we need to choose the number of interior knots K, the tuning
parameter λ and bandwidth h. We can use the classical methods such as CV, GCV, BIC-type criterion to
select these parameters. To simplify the computation, we choose the number of interior knots K using the
procedure in Zhao and Xue [14]. We first can choose K by minimizing the following cross-validation score.

CV(K) =
n∑
i=1

ri{Yi −Bτ
i β̂[i]}2, (16)

where β̂[i] is the solution of
∑n
i=1 riφi(β) = 0 after deleting the ith subject. When K is determined, we

can select the turning parameter λ by minimizing the following BIC criterion.

BIC(λ) =
∥∥∥ n∑
i=1

riBi(Yi −Bτ
i β̂

λ)
∥∥∥2

+ DF(λ) logn, (17)

where β̂λ denotes the estimators defined by (14) and (15) given λ. As in Zhou, Alan and Wang [15], we
take h = Cn−1/3, and hl = σ̂Xl

h, where σXl
is the estimated standard deviation of Xl in the sample.

3 Numerical Results

In this section, we conduct some simulations to evaluate the finite sample performances of the proposed
methods. The performances of estimators for m(·) will be assessed by using the square root of average
square errors (RASE) defined by

RASE =
{

1
N

N∑
s=1

p∑
l=1

[m̂l(xs)−m0
l (xs)]2

}1/2

,

where xs, s = 1, · · · , N , are the grid points at which the function m̂(u) is evaluated. In our simulation,
N = 200 is used. We simulate data from model (1), and we take p = 10, m1(x) = 4x−1, m2(x) = cos(2πx)
and m3(x) = sin(2πx). The remaining functions, corresponding to the irrelevant variables, are given as
zeros. We take Z = (Z1, · · · , Z10)τ ∼ N(0, Σz), and the covariates Xk = Φ(Zk), k = 1, · · · , 10, where
Φ(·) denotes the distribution function of standard normal distribution. Y is generated according to model
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(1) with ε ∼ N(0, 0.5). We also generated ri, the response indicator variable, from Bernoulli distribution
with probability π(·). We consider two response models for π(·):

Missing Mechenism 1:

π(X,η) = P(r = 1|X) = exp{(1,Xτ )η}
1 + exp{(1,Xτ )η} ,

where η = (1, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0.5)τ , and the response rate is about 60%.
Missing Mechenism 2:

π(X,η) = P(r = 1|X) = exp{(1,Xτ )η}
1 + exp{(1,Xτ )η} ,

where η = (0.3, 0.6, 1, 1, 0, 0, 0, 0, 0, 0, 0)τ , and the response rate is about 80%.
In this simulation, we use the cubic B-splines and consider the sample size n = 150, 300 and 500,

respectively. The simulation results are reported in Table 1. In Table 1, we first compare the performances
of two estimators defined in (7) and (9) with the naive estimator, which is estimated by using the complete
samples. We also compute the oracle estimator as a benchmark, and the oracle estimator is only available
in simulation studies, where the true data information is known.

Table 1. The performances of MI and MRI, NAIVE (naive estimator) and ORACLE (oracle estimator)

Modle 1 Modle 2

n Method µ m1(x) m2(x) m3(x) m4(x) µ m1(x) m2(x) m3(x) m4(x)

150 NAIVE 17.07 32.65 31.99 32.09 31.12 13.06 25.65 24.87 24.03 24.32
MI 15.31 27.32 27.01 27.12 26.83 12.36 22.53 21.25 21.32 21.58
MRI 15.16 26.23 25.28 25.39 24.63 13.16 22.26 21.36 21.25 21.63
ORACLE 14.51 24.50 23.51 23.42 22.47 11.35 18.86 18.38 18.86 18.26

300 NAIVE 11.24 19.48 19.44 18.88 18.31 10.25 17.47 18.27 17.85 17.31
MI 10.60 17.56 17.49 17.32 17.66 9.66 15.17 15.64 15.06 15.01
MRI 10.55 17.00 16.98 16.58 15.86 9.54 15.17 15.54 15.03 14.94
ORACLE 10.20 15.72 15.53 15.31 14.42 8.84 13.63 13.86 13.35 13.31

500 NAIVE 8.44 14.19 13.83 13.62 13.39 8.44 13.38 12.75 12.66 12.34
MI 8.07 12.98 12.84 12.64 12.73 8.07 11.31 11.26 11.23 11.03
MRI 8.06 12.83 12.41 12.17 11.96 6.54 11.28 11.21 11.20 11.01
ORACLE 7.87 11.91 11.41 11.18 10.91 5.32 9.63 9.45 9.36 9.29

The MSE of parameter µ and RASE of component functions are reported in Table 1, the results
demonstrates our proposed two methods have the same effectiveness as the empirical method.

The average number of the estimated zero component function for component functions, with 1000
simulation runs, is listed in Table 2, in which the column labeled “C" gives the average number of the true
zero component function correctly set to zero, and the column labeled “I" gives the average number of
the true nonzero function incorrectly set to zero. Furthermore, Table 2 also presents the median of RASE
of semiparametric µ+

∑n
i=1 mi(xi) over the 1000 simulations. From Table 2, we can find the following

results.
(i) For the given two missing mechanism models, the performances of the estimators defined by (14)

and (15) become closer to the oracle estimator as the sample size n increases. This indicates that the
proposed methods can eliminate the unimportant variables effectively and estimate the nonzero functions
simultaneously.

(ii) For the given sample size n, the performances of the estimators defined by (14) and (15) are
similar, but the latter is easy to implement.
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Table 2. The performances of MIVS and MRIVS, NAIVE (naive estimator) and ORACLE (oracle estimator)

NAIVE MIVS MRIVS ORACLE

n C I RASE C I RASE C I RASE C I RASE

M1 150 5.463 0 0.251 6.609 0 0.179 6.479 0 0.186 6.785 0 0.172
300 6.828 0 0.145 6.984 0 0.126 6.952 0 0.129 6.996 0 0.124
500 7 0 0.087 7 0 0.085 7 0 0.085 7 0 0.084

M2 150 6.479 0 0.186 6.867 0 0.153 6.860 0 0.156 6.982 0 0.136
300 6.974 0 0.126 6.997 0 0.103 6.992 0 0.110 6.998 0 0.096
500 7 0 0.089 7 0 0.080 7 0 0.080 7 0 0.079

4 Concluding Remark

In summary, we extend the variable selection method called as the smooth-threshold estimating equation
in Ueki [9] and Li et al. [10] to the additive models with missing response at random, and we propose two
new variable selection procedures for model (1) with missing response at random. The proposed methods
can select the important variables and estimate the unknown component functions simultaneously. The
main advantage of the proposed methods is to avoid the problem of solving a convex optimization. The
simulation studies show that the proposed variable selection procedures can effectively select the important
variables in the model with missing data. In addition, there is a useful form of expansion of the additive
model for additive partially linear model and the generalized additive model. Therefore, further study
of the problem is how to use the smooth-threshold estimating equations method to study the variable
selection in some semiparametric models with missing data.
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Appendix

For convenience and simplicity, let C denote a positive constant that may be different at each appearance
throughout this paper. Before we prove our main theorems, we list some regularity conditions that are
used in this paper.
(A1) The covariate X = (X1, · · · , Xp)τ has a compact support set, and let the compact set be χ = [0, 1]p.

(A2) The density function of Xl, denoted by fl(x), is absolutely continuous. There exist constants C1
and C2 such that 0 < C1 ≤ min

x∈[0,1]
fl(x) ≤ max

x∈[0,1]
fl(x) ≤ C2 <∞ for all l = 1, . . . , p.

(A3) The bandwidth h satisfies h→ 0, nh2 →∞, and nh4 → 0 as n→∞.

(A4) For each l = 1, . . . , p, ml(·) has r continuous derivatives for some r ≥ 2.

(A5) The tuning parameter λ satisfies that nr/(2r+1)λ→∞ and n1/2λ→ 0 as n→∞.

These conditions are commonly used in the additive model and variable selection references, such as
Conditions (A1)–(A4) are similar to those used in Xue [16], and Condition (A5) is a necessary condition
to prove the consistency of variable selection.

Proof of Theorem 1. Since the proof of the estimator m̂(MRI)
l (·) defined in (9) is similar to the

proof of the estimator m̂(MI)
l (·), we only prove the result of the estimator m̂(MI)

l (·) defined in (7). By (6),
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we have

L(β,X) = 1
n

n∑
i=1

φ
(MI)
i (β,Xi) = 1

n

n∑
i=1

{
riφi(β) + {1− ri}m̂(MI)

φ (β,Xi)
}

= 1
n

n∑
i=1

{
riφi(β) + {1− ri}mφ(β,Xi) + {1− ri}{m̂(MI)

φ (β,Xi)−mφ(β,Xi)}
}

=: I1 + I2 + I3.

For I1, we have

I1 = 1
n

n∑
i=1
{riφi(β)} = 1

n

n∑
i=1
{riBi(Yi −Bτ

i β)}

= 1
n

n∑
i=1

riBi

{[
Yi −

(
µ+

p∑
l=1

ml(Xil)
)]

+
(
µ+

p∑
l=1

ml(Xil)−Bτ
i β

0

)
+ riBiBτ

i (β0 − β)
}

=: I11 + I12 + I13.

By some elementary calculations, we have

I11 = 1
n

n∑
i=1

riBiεi → Op(n−1/2).

Note that Bτ
i β

0 represents that the function µ+
p∑
l=1

ml(xl) projects into the additive spline space. By

the spline result in de Boor [17], we have

I12 = max
1≤i≤n

∥∥∥µ+
p∑
l=1

ml(Xil)−Bτ
i β

0
∥∥∥ = Op(K−r)

and
I13 = Op(1)(β − β0).

Then, we have I1 = Op(K−r + n−1/2) +Op(1)(β − β0). Using the same argument of I1, we can obtain
that I2 = Op(K−r + n−1/2) +Op(1)(β − β0). By the results of the kernel smoothing method, we have
I3 = Op((nh)−1/2). Note that β̂(MI) is the solution of the equation L(β,X) = 0, and K = Op(n1/(2r+1))
and nh4 → 0. Thus it is easy to see that

‖m̂(MI)
l (·)−m0

l (·)‖ = Op(n−r/(2r+1)), l = 1, · · · , p.

By these results, we finish the proof of Theorem 1.
Proof of Theorem 2. By Theorem 1, we can get that β̃0

j = Op(n−r/(2r+1)), j = 1, · · · , p. For any
ε > 0, we have

P(δ̂j > n−1/2ε) = P

(
λ

‖β̃0
k‖

> n−1/2ε

)
= P

(
‖β̃0

k‖ < n1/2ε−1λ
)
→ 0, j = 1, · · · , p.

By the condition n1/2λ → 0, and ‖β̃0
k‖ is bound away from zero. Thus, we have δ̂j = op(n−1/2), for

j = 1, · · · , p. A slight symbol abuse, we have 4̂ = op(n−1/2) and

Q(β) = (IpJ − 4̂)
n∑
i=1

{
riBi(Yi −Bτ

i β) + (1− ri)m̂(MI)
φ (Xi)

}
+ 4̂β

= (IpJ − 4̂)
n∑
i=1

riBi(Yi −Bτ
i β) + (IpJ − 4̂)

n∑
i=1

(1− ri)mφ(Xi)

+(IpJ − 4̂)
n∑
i=1

(1− ri)(m̂(MI)
φ (Xi)−mφ(Xi)) + 4̂β.
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Similar to the proof of Theorem 1, and note that δ̂j = op(n−1/2), the proof of the convergence rate of
m̂

(MIVS)
l (·) is similar to that of the convergence rate of m̂(MI)

l (·), l = 1, · · · , p. Similarly, we also can prove
the convergence rate of m̂(MRIVS)

l (·). Therefore, we finish the proof of Theorem 2.

Proof of Theorem 3. By condition (A5) nr/(2r+1)λ→∞ as n→∞, we have

p∑
j=d+1

P(λ/‖β̂0
j ‖ < 1) ≤ λ−1O(n−r/(2r+1))→ 0.

By the above result, it is easy to see that

P(δ̂j = 1, for all j = d+ 1, · · · , p)→ 1,

which implies that m̂(MIVS)
j (·) ≡ 0 and m̂(MRIVS)

j (·) ≡ 0, j = d+ 1, · · · , p. Hence we complete the proof of
Theorem 3.
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