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Abstract In this article we consider testing for main and interaction effects in heteroscedastic
two-way MANOVA model. We express the model in the form of the general linear hypothesis
testing (GLHT) problem and construct the sum of squares and cross products (SSCP) matrices
due to hypothesis and error respectively. We modify the classical Wilks’s Likelihood Ratio (WLR),
Lawley-Hotelling Trace (LHT) and Bartlett-Nanda-Pillai trace (BNP) tests based on these two SSCP
matrices with the approximate degrees of freedoms (ADF) obtained by matching the means and the
total variations of the SSCP matrices and their respective approximating Wishart distributions. The
resulting modified WLR, LHT, BNP tests are shown to be invariant under affine-transformations,
different choices of the contrast matrix used to define the same hypothesis, and different labeling
schemes of the cell mean vectors. Simulation studies presented in this paper also show that the
proposed tests generally perform well and outperform one existing approach in terms of controlling
the desired size and enhancing the powers. An example from a Smoking Cessation trial is given to
illustrate the proposed methodologies.

Keywords: Two-way MANOVA, Heteroscedastic, General linear hypothesis test, Unbalanced,
Wishart-approximation, Affine-invariant, Main-effect, Interaction-effect

1 Introduction

Two-way Multivariate Analysis of Variance (MANOVA) is an important component in multivariate
data analysis. It is a procedure used to test the statistical significance of the effect of two categorical
independent variables on a set of two or more continuous dependent variables. Motivations for two-way
MANOVA in agriculture, biology, physics and other disciplines can be found in [1], [2], [3], [4], and among
others.

Classical MANOVA models assume that the covariance matrices are homogeneous across experimental
cells. This homogeneity assumption can be tested by the well-known Box’s M test [5] which is similar to
Levene’s test [6] for ANOVA. When the homogeneity assumption is satisfied, four well-known multivariate
tests: Wilks’s Likelihood Ratio (WLR), Lawley-Hotelling Trace (LHT), Bartlett-Nanda-Pillai trace (BNP)
and Roy Maximum Root, can be used for two-way MANOVA [7].

When there is a small departure from the homogeneity assumption but the numbers of observations
in each experimental cell are equal, that is, the MANOVA model is balanced, the aforementioned tests
can still be used, only with a very slight reduction in statistical power, see [8]. When the homogeneity
assumption is seriously violated, none of these four tests are robust, their sizes will be either inflated
or deflated greatly, which may lead to serious inappropriate conclusions. Hence, these four tests may
not be directly used for heteroscedastic two-way MANOVA. However, in real data analysis, researchers
often apply these classical MANOVA testing procedures blindly for the sake of simplicity even though
they know that the homogeneity assumption may be violated. This is probably due to the fact that no
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simple and efficient testing procedures are available in the literature which are robust for heteroscedastic
two-way MANOVA.

Since the asymptotic theory for heteroscedastic two-way MANOVA tends to be much more involved, to
our best knowledge, not much related research work has been carried out. [9] may be the first literature for
solving this problem. They suggested modifications to the usual sum of squares and cross products (SSCP)
matrices to define their modified WLR, LHT and BNP tests for heteroscedastic two-way MANOVA.
The approximate degrees of freedom (ADF) of these modified MANOVA tests are estimated from the
data. To approximate the null distributions of these modified MANOVA tests, [9] used some χ2 and
normal-based asymptotic expansions. Though simple to understand, their modified MANOVA tests
admit several drawbacks: (1) the modified MANOVA tests are too conservative and less powerful, as
indicated by the simulation results presented in Section 3; (2) very complex matrix operations and tedious
calculations are involved in the derivation of the ADF formulas so that the resulting ADF formulas take
very complicated forms and are difficult to be used; (3) the resulting modified MANOVA tests are not
affine-invariant; and (4) [9] failed to introduce a weight scheme for defining the main and interaction
effects in their modified MANOVA tests. Recently, the first three drawbacks have been addressed by
[10] which proposed better formulas for computing the approximate degrees of freedom of the modified
MANOVA tests and a method to make the modified MANOVA tests affine-invariant. Alternatively, [11]
proposed an approximate Hotelling T 2-test for heteroscedastic two-way MANOVA.

In this article, we extend the modified MANOVA tests of [9] and [10] to test the so-called general
linear hypothesis testing (GLHT) problem in heteroscedastic two-way MANOVA. All related tests under
heteroscedastic two-way MANOVA, e.g., the main-effect, interaction-effect, post hoc, and contrast tests
among others, can be unified under the framework of the GLHT problem. We first define two SSCP
matrices, respectively due to hypothesis and error, and then define the associated modified WLR, LHT
and BNP tests based on these two SSCP matrices with their approximate degrees of freedom estimated
from the data. We show that the resulting modified WLR, LHT, BNP tests are invariant under affine-
transformations, different choices of the contrast matrix used to define the same hypothesis, and different
labeling schemes of the cell mean vectors. Unlike in the modified MANOVA tests of [9] and [10], a
weight scheme for defining the main and interaction effects is naturally incorporated in our new modified
MANOVA tests. Furthermore, the formulas for computing the approximate degrees of freedom of the
SSCP matrices are easy to compute. Simulated results reported in Section 3 show that the proposed
modified MANOVA tests perform very well and outperform those of [9]’s in terms of controlling the
desired sizes and enhancing the powers.

This article is organized as follows. In Section 2, the methodologies for the new modified MANOVA
tests are presented. Simulation studies are given in Section 3. In Section 4, the methodologies proposed in
this article are illustrated using a real data example. Finally, some technical proofs of the main results
are given in the Appendix.

2 Methodologies

2.1 Tests of Main and Interaction Effects

Consider the two-way MANOVA model with factors A and B, each with levels a and b, respectively,
creating a design of ab treatment combinations or cells. Suppose the number of subjects in the (i, j)th
cell is nij , i = 1, · · · , a; j = 1, · · · , b, and we measure p variables on each subject. Let yijk, k = 1, · · · , nij
be the observations associated with the (i, j)th cell, satisfying

yijk = µij + εijk, εijk
i.i.d.∼ Np(0,Σij), k = 1, 2, · · · , nij , (2.1)

where µij is the mean vector of the (i, j)th cell and there is no knowledge about the equality of the
covariance matrices Σij , i = 1, 2, · · · , a; j = 1, 2, · · · , b. The cell mean vectors µij are often decomposed
into the form µij = µ0 +αi + βj + γij , i = 1, 2, · · · , a; j = 1, 2, · · · , b where µ0 is the grand mean vector,
αi and βj are the main-effects due to the ith level of factor A and the jth level of factor B, γij is the
interaction-effect between the ith level of factor A and the jth level of factor B so that the model (2.1)
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can be written into the following heteroscedastic two-way MANOVA model:

yijk = µ0 +αi + βj + γij + εijk,
εijk ∼ Np(0,Σij), ; k = 1, · · · , nij ; i = 1, · · · , a, j = 1, · · · , b. (2.2)

For this heteroscedastic two-way MANOVA model, we are interested in testing the following hypotheses:

H(A)
0 : αi = 0, i = 1, · · · , a. (no main-effects of factor A),
H(B)

0 : βj = 0, j = 1, · · · , b. (no main-effects of factor B),
H(AB)

0 : γij = 0, i = 1, · · · , a; j = 1, · · · , b. (no interaction-effects).
(2.3)

Note that the model (2.2) is not identifiable since the parameters µ0,αi,βj and γij can not be
uniquely defined unless some side constraints are imposed. Given a sequence of positive weights
wij , i = 1, 2, · · · , a; j = 1, 2, · · · , b, following [11], we impose the following side constraints:∑a

i=1 wi·αi = 0,
∑a
i=1 wijγij = 0, j = 1, 2, · · · , b− 1,∑b

j=1 w·jβj = 0,
∑b
j=1 wijγij = 0, i = 1, 2, · · · , a− 1,∑a
i=1
∑b
j=1 γij = 0,

(2.4)

where wi· =
∑b
j=1 wij and w·j =

∑a
i=1 wij .

Remark 1. There are several methods which can be used to specify the weights wij , i = 1, 2, · · · , a; j =
1, 2, · · · , b; see for example, [12]. Following [11], in this paper, we use the following two simple methods:
the equal-weight method and the size-adapted-weight method. Both methods specify the weights as
wij = uivj , i = 1, 2, · · · , a; j = 1, 2, · · · , b, with the equal-weight method specifying u and v as ui =
1/a, vj = 1/b, i = 1, 2, · · · , a; j = 1, 2, · · · , b, while the size-adapted-weight method specifying u and v as
ui =

∑b
j=1 nij/N, i = 1, 2, · · · , a, and vj =

∑a
i=1 nij/N, j = 1, 2, · · · , b, where N =

∑a
i=1
∑b
j=1 nij . When

the two-way MANOVA design is balanced, i.e., when all the cell sizes nij , i = 1, 2, · · · , a; j = 1, 2, · · · , b,
are the same, the size-adapted-weight method reduces to the equal-weight method.

Set α = [α1, · · · ,αa]T ,β = [β1, · · · ,βb]T ,γ = [γ11, · · · ,γ1b, · · · ,γa1, · · · ,γab]T . Notice that the
effect matrices α,β and γ are of sizes a×p, b×p, and (ab)×p respectively. Then under the side conditions
(2.4), the three null hypotheses in (2.3) can be further written as

H(A)
0 : Saα = 0, with Sa =

(
Ia−1,−1a−1

)
,

H(B)
0 : Sbβ = 0, with Sb =

(
Ib−1,−1b−1

)
,

H(AB)
0 : Sabγ = 0, with Sab =

(
Ia−1,−1a−1

)
⊗
(
Ib−1,−1b−1

)
,

(2.5)

where Ir and 1r denote the identity matrix of size r and the r-dimensional vector of ones, respectively,
and ⊗ denotes the Kronecker product operation. The matrices Sa,Sb, and Sab are full rank contrast
matrices whose rows sum up to 0, having ranks (a− 1), (b− 1) and (a− 1)(b− 1), respectively.

When the weights can be written as wij = uivj , i = 1, 2, · · · , a; j = 1, 2, · · · , b, such that ui >
0,
∑a
i=1 ui = 1 and vj > 0,

∑b
j=1 vj = 1 as in the equal-weight method and the size-adapted

weight method mentioned above, we can easily identify the parameters µ0,αi,βj and γij as µ0 =∑a
i=1
∑b
j=1 uivjµij , αi =

∑b
j=1 vjµij − µ0, βj =

∑a
i=1 uiµij − µ0, and γij = µij − αi − βj − µ0.

Let u = [u1, · · · , ua]T ,v = [v1, · · · , vb]T and M = [µ11, · · · ,µ1b, · · · ,µa1, · · · ,µab]T . Note that M is a
matrix of size (ab) × p whose rows are the ab cell mean vectors. Denote an l-dimensional unit vector
whose rth component is 1 and others are 0 as er,l. Then we have

µT0 = (uT ⊗ vT )M , αTi = [(ei,a − u)T ⊗ vT ]M ,

βTj = [uT ⊗ (ej,b − v)T ]M , γTij = [(ei,a − u)T ⊗ (ej,b − v)T ]M ,
i = 1, 2, · · · , a; j = 1, 2, · · · , b.

(2.6)
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It follows that the effect matrices α, β and γ can be further written as

α = AaM , with Aa = (Ia − 1auT )⊗ vT ,
β = AbM , with Ab = uT ⊗ (Ib − 1bvT ),
γ = AabM , with Aab = (Ia − 1auT )⊗ (Ib − 1bvT ),

(2.7)

where the matrices Aa,Ab, and Aab are not full rank matrices, having ranks (a − 1), (b − 1), and
(a − 1)(b − 1), respectively. It follows that each of the testing problems associated with the three null
hypotheses (2.5) can then be equivalently expressed in the form of the GLHT problem (2.9) as defined in
the next subsection with C0 = 0 and C, respectively, being

Ca = SaAa = (Ia−1,−1a−1)⊗ vT ,
Cb = SbAb = uT ⊗ (Ib−1,−1b−1),
Cab = SabAab =

(
Ia−1,−1a−1

)
⊗
(
Ib−1,−1b−1

)
.

(2.8)

Remark 2. It is interesting to notice from (2.8) that Ca does not depend on the weight vector u of the
levels of factor A, Cb does not depend on the weight vector v of the levels of factor B, and Cab does not
depend on either of the weight vectors u and v.

2.2 Modified MANOVA Tests for the GLHT Problem

Using the cell mean matrix M defined in the previous subsection, we can write a GLHT problem as:

H0 : CM = C0, vs H1 : CM 6= C0, (2.9)

where C : q × (ab) is a known full rank matrix with rank(C) = q, and C0 : q × p is a known constant
matrix, often specified as 0. For the three null hypotheses in (2.3), C0 = 0 and the associated C-matrices
are given in (2.8).

The GLHT problem (2.9) is very general. It includes not only the main and interaction effect tests
but also various post hoc and contrast tests as special cases since any post hoc and contrast tests can be
written in the form of (2.9). For example, when the main-effect test, as given in (2.3), of factor A in the
two-way MANOVA model is rejected, it is of interest to further test, e.g., if αi = 5αj or if a contrast
αi − 4αj + 3αk = 0. It is easy to check that these two testing problems can be written in the form of
(2.9) with C = [ei,a − 5ej,a]TAa and C = [ei,a − 4ej,a + 3ek,a]TAa respectively and with C0 = 0.

For further development, denote the usual unbiased estimators of the cell mean vectors and cell
covariance matrices as:

µ̂ij = n−1
ij

∑nij
k=1 yijk, Σ̂ij = (nij − 1)−1∑nij

k=1(yijk − µ̂ij)(yijk − µ̂ij)T ,
i = 1, 2, · · · , a; j = 1, 2, · · · , b. (2.10)

Set M̂ = [µ̂11, · · · , µ̂1b, · · · , µ̂a1, · · · , µ̂ab]T and D = diag( 1
n11

, · · · , 1
n1b

, · · · , 1
na1

, · · · , 1
nab

). Notice that
M̂ is a random matrix whose rows are independent with each other. For testing (2.9), we construct the
SSCP matrix due to hypothesis as

H = (CM̂ −C0)T
(
CDCT

)−1
(CM̂ −C0). (2.11)

Notice that under H0 : CM = C0, the SSCP matrix H can be further expressed as

H = (CM̂ −CM)T
(
CDCT

)−1
(CM̂ −CM) = ETW E , (2.12)

where W = CT
(
CDCT

)−1
C = (wij,αβ) : (ab) × (ab) with the entries of W labeled by two-digit

subscripts to be associated with the subscripts of the cell mean vectors µij , i = 1, · · · , a; j = 1, · · · , b, and
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E = M̂ −M = [ε̄11., · · · , ε̄1b., · · · , ε̄a1., · · · , ε̄ab.]T with ε̄ij. = n−1
ij

∑nij
k=1 εijk. Notice that E is a random

matrix whose rows are independent with each other and

ε̄ij. ∼ Np(0,Σij/nij), i = 1, · · · , a; j = 1, · · · , b. (2.13)

Let Ω denote the expectation of H under the null hypothesis. In this case, applying Lemma 1 in the
Appendix to H in the form of (2.12) yields that

Ω = E(H) =
a∑
i=1

b∑
j=1

wij,ijΣij/nij . (2.14)

It is easy to see that a natural unbiased estimator of Ω is given by

G = Ω̂ =
a∑
i=1

b∑
j=1

wij,ijΣ̂ij/nij , (2.15)

where the sample covariance matrices Σ̂ij are given in (2.10). It is natural to count G as the SSCP
matrix due to error. Since the sample cell mean vectors µ̂ij , i = 1, · · · , a; j = 1, · · · , b are independent
of the sample cell covariance matrices Σ̂ij , i = 1, · · · , a; j = 1, · · · , b, the random matrices H and G
are independent. Let Wp(r,V ) denote a Wishart-distribution with r degrees of freedom and covariance
matrix V . When the covariance homogeneity assumption holds, we have

Σij = Σ, i = 1, · · · , a; j = 1, · · · , b, (2.16)

where Σ is the common cell covariance matrix, which can be unbiasedly and effectively estimated by the
following pooled sample covariance matrix

Σ̂ = (N − ab)−1
a∑
i=1

b∑
j=1

(nij − 1)Σ̂ij . (2.17)

Remark 3. Under the homogeneity assumption (2.16) and the null hypothesis in (2.9), it is easy to show
that

H ∼Wp(q,Ω/q), G ∼Wp(N − ab,Ω/(N − ab)), (2.18)

after the sample covariance matrices Σ̂ij in the expression of G are replaced with the pooled sample
covariance matrix Σ̂ (2.17) where Ω = qΣ. In this case, set R1 = qH and R2 = (N − ab)G. Then

R1 ∼Wp(q,Ω), and R2 ∼Wp(N − ab,Ω), (2.19)

so that one can easily use R1 and R2 to construct the classical WLR, LHT and BNP test statistics as in
(2.22).

However, when the homogeneity assumption (2.16) is seriously violated, the distribution expressions
in (2.18) are no longer valid. Nevertheless, we expect that the expressions in (2.18) hold approximately,
provided that the associated degrees of freedom are adjusted properly. In other words, the distributions
of H and G may be well approximated respectively by the distributions of the following Wishart random
matrices:

Ha ∼Wp(fH,Ω/fH) and Ga ∼Wp(fG,Ω/fG), (2.20)

where fH and fG are the approximate degrees of freedom for H and G respectively. The approximate
degrees of freedom fH and fG can be determined via matching the total variations of H and Ha, and
those of G and Ga, respectively. As pointed out in [10], the resulting fH and fG are not affine-invariant
so that the modified MANOVA tests based on H, G, fH, and fG, are not affine-invariant as in [9].

To overcome this problem, notice that when (2.20) holds, we have H̃a = Ω−1/2HaΩ
−1/2 ∼

Wp(fH, Ip/fH) and G̃a = Ω−1/2GaΩ
−1/2 ∼Wp(fG, Ip/fG). This implies that the approximate degrees
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of freedom fH and fG of H and G are also the approximate degrees of freedom of H̃ = Ω−1/2HΩ−1/2

and G̃ = Ω−1/2GΩ−1/2. Therefore, fH and fG can also be determined via matching the total variations
of H̃ and H̃a, and those of G̃ and G̃a, respectively. According to [10], the total variation of a random
matrix X = (xij) is defined as V(X) = Etr(X − EX)2 =

∑
i,j Var(xij), i.e., the sum of the variances of

all the entries of X. After some calculation, we have the following proposition.

Proposition 1. The approximate degrees of freedom fH and fG obtained via matching the total variations
of H̃ and H̃a, and those of G̃ and G̃a respectively, are given by

fH = p(p+ 1)
{∑a

i,α=1
∑b
j,β=1 w

2
ij,αβ [tr(V ij)tr(V αβ) + tr(V ijV αβ)]

}−1
,

fG = p(p+ 1)
{∑a

i=1
∑b
j=1 w

2
ij,ij(nij − 1)−1 [tr2(V ij) + tr(V 2

ij)
]}−1

,

where tr(V ) denotes the trace of V and V ij = ΣijΩ
−1/nij , i = 1, · · · , a; j = 1, · · · , b. In addition, we

have the following equalities:

1 ≤ fH ≤ ab, nmin − 1 ≤ fG ≤ ab(nmax − 1), (2.21)

where nmin = minai=1 minbj=1 nij and nmax = maxai=1 maxbj=1 nij.

Remark 4. Under the homogeneity assumption (2.16), it is easy to show that fH = q but fG 6= N − ab.
This is because the homogeneity assumption is not taken into account in the construction of G and the
computation of the variation of G; otherwise, fG = N − ab as indicated in Remark 3.

Set R1 = fHH and R2 = fGG. Then R1 ∼Wp(fH ,Ω) and R2 ∼Wp(fG,Ω) approximately so that
the modified WLR, LHT and BNP test statistics can be respectively defined as:

TWLR = − log(|R2|/|R1 +R2|), TLHT = tr(R1R
−1
2 ), and TBNP = tr(R1(R1 +R2)−1). (2.22)

Since R1 and R2 are independent, the distributions of TWLR, TLHT and TBNP are approximately the
distributions of the classical WLR, LHT and BNP test statistics with fH and fG degrees of freedom. The
exact distributions of these test statistics under the null and non-null hypotheses have very complicated
forms except for a few special cases. Fortunately, for given fH and fG, there are some satisfactory
approximations for the distributions of these test statistics. In popular statistical software such as SAS,
Splus and R, these distributions are usually approximated by the F -approximation method. Alternatively,
[9] used the chi-squared based series expansion [7] and the normal based series expansion [13].

Remark 5. In real data analysis, the approximate degrees of freedom fH and fG can be obtained from
Proposition 1, denoted as f̂H and f̂G, via replacing Ω and Σij , i = 1, · · · , a; j = 1, · · · , b by their unbiased
estimators G and Σ̂ij , i = 1, · · · , a; j = 1, · · · , b, respectively. The modified MANOVA test statistics
(2.22) can then be calculated and their distributions can be approximated either by the F -approximation
method, or by the chi-squared or normal based series expansion method.

2.3 Properties of the Proposed Modified MANOVA Tests

The proposed modified WLR, LHT and BNP tests have several desirable invariance properties. First of
all, we can show that these modified MANOVA tests are affine-invariant.

Proposition 2. The proposed modified WLR, LHT and BNP tests are invariant under the following
affine-transformation:

y0
ijk = Ayijk + ξ, k = 1, · · · , nij ; i = 1, · · · , a; j = 1, · · · , b, (2.23)

where A is any nonsingular matrix and ξ is any constant vector.
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The affine-invariance property is often considered as a natural requirement for a test in multivariate
statistical inference. This is because in practice, the observed cell responses are often re-centered or re-
scaled before any inference is conducted. Re-centering and re-scaling transformations are just special cases
of the above affine-transformation. The modified MANOVA tests proposed in [9] are not affine-invariant.

Notice that for the hypotheses in (2.5), the contrast matrices Sa,Sb and Sab are not unique. For
example, S̃a = (−1a−1, Ia−1) is also a contrast matrix for the first hypothesis in (2.5). It is known from
[14]( Ch. 5, Sec. 4) that for any two contrast matrices S̃ and S specifying the same hypothesis, there is
a nonsingular matrix P such that S̃ = PS. Let the C-matrices associated with the contrast matrices
S∗ and S̃∗ are C∗ and C̃∗ respectively where ∗ can be a, b or ab. Since there is a nonsingular matrix
P such that S̃∗ = PS∗, by (2.8), we have C̃∗ = S̃∗A∗ = PS∗A∗ = PC∗. Based on this, the following
proposition implies that the proposed modified WLR, LHT and BNP tests are invariant to the choice of
the contrast matrices for the same hypothesis.

Proposition 3. The proposed modified WLR, LHT and BNP tests are invariant when the coefficient
matrix C and the constant matrix C0 in (2.9) are replaced with

C̃ = PC, and C̃0 = PC0, (2.24)

respectively where P is any nonsingular matrix of size q × q.

Finally, we have the following simple result.

Proposition 4. The proposed modified WLR, LHT and BNP tests are invariant under different labeling
schemes of the cell mean vectors µij , i = 1, · · · , a; j = 1, · · · , b.

3 Simulation Studies

In the introduction section, we pointed out that the proposed modified MANOVA tests are extensions of
[10]’s test. Not limited to main and interaction effects testing, the proposed modified MANOVA tests can
conduct all linear hypothesis tests under heteroscedastic two-way MANOVA in the unified framework of
the GLHT problem. Besides, the weight scheme for defining the main and interaction effects is naturally
incorporated in the proposed modified MANOVA test to take the unequal cell sizes into account. This
is obviously another improvement to [10]’s test. Furthermore, we expect that the proposed modified
MANOVA tests will also perform well in terms of size controlling and power.

In this section, we shall present simulation studies to compare the proposed modified MANOVA
tests with three existing MANOVA testing procedures for heteroscedastic two-way MANOVA in terms
of maintaining the nominal size and power. [9] showed that their modified WLR, LHT and BNP tests
performed similarly. [10] also showed that their affine-invariant modified WLR, LHT and BNP tests were
overall comparable. By a pre-simulation study, we also found that the modified WLR, LHT and BNP
tests proposed in the previous section were quite similar in terms of maintaining the nominal size and
power. In light of these facts, in this section, our simulation studies will compare the modified LHT test
(namely LHT3) proposed in the previous section against the modified LHT test of [9] (namely LHT1), the
affine-invariant modified LHT test of [10] (namely LHT2), and the approximate Hotelling T 2-test (namely
AHT) of [11]. In all the simulation studies, the null distributions of the modified MANOVA tests are
approximated by the F -approximation method and only the equal-weight method is used. We do this
to achieve a fair comparison. This is because the size-adapted-weight method has not been considered
in either the modified LHT test of [9] or the affine-invariant modified LHT test of [10]. Furthermore, as
pointed out in Remark 2, the coefficient matrix for interaction effect tests does not depend on either of the
weight vectors of the levels of factor A and those of factor B. In other words, the proposed modified LHT
test will have exactly the same performance for interaction effect tests under both weighting methods.

Let the two factors be A and B with a and b levels respectively. Let n = (n11, n12, · · · , nab) denote
the vector of cell sizes. For given n and covariance matrices Σij , i = 1, 2, · · · , a; j = 1, 2, · · · , b, we first
generate ab multivariate random samples as

yijk = µij +Σ1/2
ij εijk, k = 1, 2, · · · , nij , (3.1)
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Table 1. Empirical sizes and powers of interaction-effect test for two-way MANOVA (p = 2).

a = 2, b = 20, Σ1j = I2, Σ2j = diag(λ), j = 1, 2, · · · , 20.

δ = 0 δ = 3.6 δ = 5.4

Error λ n LHT1 LHT2 LHT3 AHT LHT1 LHT2 LHT3 AHT LHT1 LHT2 LHT3 AHT

N(0, 1) λ1 n1 .0321 .0390 .0390 .0425 .4722 .5045 .5045 .3986 .9281 .9357 .9357 .8616
n2 .0388 .0432 .0432 .0470 .7318 .7469 .7469 .6832 .9950 .9957 .9957 .9891
n3 .0411 .0443 .0448 .0484 .9715 .9729 .9772 .9686 1.000 1.000 1.000 1.000
n4 .0445 .0486 .0463 .0517 .9862 .9874 .9971 .9950 1.000 1.000 1.000 1.000

λ2 n1 .0321 .0505 .0505 .0434 .1373 .1876 .1876 .2407 .3960 .4745 .4745 .6246
n2 .0350 .0514 .0514 .0492 .2329 .2884 .2884 .4357 .6611 .7265 .7265 .8963
n3 .0376 .0496 .0488 .0495 .5720 .6208 .5873 .7813 .9771 .9845 .9751 .9973
n4 .0354 .0519 .0538 .0503 .4892 .5571 .7453 .9652 .9545 .9683 .9980 1.000

λ3 n1 .0271 .0493 .0493 .0429 .0854 .1385 .1385 .2177 .2295 .3253 .3253 .5771
n2 .0304 .0519 .0519 .0496 .1410 .2002 .2002 .4085 .4173 .5199 .5199 .8718
n3 .0361 .0569 .0544 .0501 .3469 .4267 .4021 .7483 .8579 .9052 .8809 .9951
n4 .0321 .0504 .0510 .0501 .3087 .3886 .5320 .9630 .8073 .8625 .9656 1.000

ARE 29.62 6.500 6.933 4.950

t4/
√

2 λ1 n1 .0177 .0267 .0267 .0231 .3793 .4456 .4456 .4579 .8669 .9063 .9063 .9320
n2 .0235 .0312 .0312 .0373 .6543 .6975 .6975 .7660 .9774 .9862 .9862 .9972
n3 .0315 .0373 .0377 .0412 .9496 .9615 .9670 .9849 .9988 .9999 1.000 1.000
n4 .0363 .0426 .0405 .0414 .9723 .9803 .9920 .9980 .9987 .9996 .9997 1.000

λ2 n1 .0183 .0307 .0307 .0262 .1026 .1528 .1528 .2594 .3391 .4372 .4372 .7240
n2 .0201 .0329 .0329 .0321 .2078 .2701 .2701 .5177 .6092 .6935 .6935 .9467
n3 .0321 .0430 .0422 .0396 .5385 .6030 .5645 .8509 .9581 .9731 .9626 .9992
n4 .0268 .0417 .0415 .0391 .4518 .5354 .7254 .9810 .9258 .9550 .9933 1.000

λ3 n1 .0150 .0324 .0324 .0250 .0584 .1002 .1002 .2443 .1844 .2793 .2793 .6728
n2 .0207 .0377 .0377 .0323 .1141 .1744 .1744 .4797 .3612 .4781 .4781 .9254
n3 .0278 .0486 .0468 .0421 .3237 .4152 .3910 .8117 .8189 .8754 .8504 .9987
n4 .0244 .0429 .0481 .0443 .2714 .3642 .5078 .9734 .7625 .8349 .9461 1.000

ARE 50.97 25.38 25.27 29.38

λ1 = (1, 1), λ2 = (1, 5) and λ3 = (1, 10). n1 = (7, 7)20, n2 = (10, 10)20, n3 = (15, 20)20 and n4 = (30, 15)20.

where the cell mean vectors µij = µ11 + ijδh/(ab) with µ11 being the first cell mean vector, h a constant
unit vector specifying the direction of the cell mean differences, and δ a tuning parameter controlling the
amount of the cell mean differences. We independently generate the p entries of the error terms εijk using
two schemes: (1) from the N(0, 1) distribution and (2) from the t4/

√
2 distribution, so that we always

have E(εijk) = 0 and Cov(εijk) = Ip. This means that (3.1) will generate the (ij)-th multivariate normal
or non-normal sample yijk, k = 1, 2, · · · , nij with the given mean vector µij and covariance matrix Σij .
Without loss of generality, we specify µ11 as 0 and h as h0/‖h0‖ where h0 = [1, 2, · · · , p]′ for any given
dimension p and ‖h0‖ denotes the usual L2-norm of h0. We then apply the four tests to the generated
data, and record their P-values. This process is repeated N = 10, 000 times. The empirical sizes (when
δ = 0) and powers (when δ > 0) of the four tests are the proportions of rejecting the null hypothesis, i.e.,
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Table 2. Empirical sizes and powers of interaction-effect test for two-way MANOVA (p = 3).

a = 3, b = 10, Σ1j = I3, Σ2j = diag(λ), Σ3j =
( 1 ρ ρ
ρ 1 ρ
ρ ρ 1

)
, j = 1, 2, · · · , 10.

δ = 0 δ = 3.6 δ = 5.4

Error (λ, ρ) n LHT1 LHT2 LHT3 AHT LHT1 LHT2 LHT3 AHT LHT1 LHT2 LHT3 AHT

N(0, 1) (λ1, ρ1) n1 .0254 .0417 .0417 .0307 .2567 .3257 .3257 .1849 .7345 .7946 .7946 .5377
n2 .0300 .0428 .0428 .0408 .4943 .5441 .5441 .4310 .9518 .9650 .9650 .8979
n3 .0331 .0467 .0434 .0607 .8032 .8349 .9285 .8875 .9992 .9994 .9999 .9998
n4 .0410 .0491 .0492 .0534 .9284 .9380 .9524 .9331 1.000 1.000 1.000 .9999

(λ2, ρ2) n1 .0222 .0445 .0445 .0303 .2366 .3499 .3499 .2543 .7067 .8112 .8112 .6941
n2 .0314 .0530 .0530 .0484 .4641 .5617 .5617 .5539 .9440 .9666 .9666 .9645
n3 .0436 .0545 .0535 .0691 .8294 .8525 .9506 .9801 .9996 .9999 1.000 1.000
n4 .0374 .0550 .0557 .0532 .9262 .9474 .9626 .9838 1.000 1.000 1.000 1.000

(λ3, ρ3) n1 .0299 .0474 .0474 .0304 .2787 .3647 .3647 .2561 .7596 .8312 .8312 .6899
n2 .0302 .0438 .0438 .0423 .5247 .5913 .5913 .5641 .9598 .9729 .9729 .9652
n3 .0412 .0487 .0502 .0675 .8521 .8714 .9606 .9781 .9999 1.000 1.000 1.000
n4 .0419 .0522 .0513 .0499 .9497 .9601 .9717 .9845 1.000 1.000 1.000 1.000

ARE 32.12 8.333 8.483 21.85

t4/
√

2 (λ1, ρ1) n1 .0109 .0268 .0268 .0145 .1833 .2861 .2861 .2123 .6098 .7451 .7451 .6580
n2 .0194 .0337 .0337 .0296 .3963 .4993 .4993 .5099 .9022 .9484 .9484 .9553
n3 .0182 .0335 .0344 .0462 .7369 .8181 .9166 .9386 .9859 .9967 .9994 .9999
n4 .0246 .0359 .0359 .0397 .8892 .9242 .9392 .9609 .9975 .9998 1.000 1.000

(λ2, ρ2) n1 .0116 .0302 .0302 .0183 .1739 .3000 .3000 .3121 .6077 .7661 .7661 .8174
n2 .0191 .0385 .0385 .0285 .4070 .5440 .5440 .6678 .8873 .9465 .9465 .9900
n3 .0300 .0413 .0425 .0464 .7742 .8289 .9321 .9916 .9881 .9952 .9985 1.000
n4 .0258 .0431 .0436 .0423 .8948 .9331 .9493 .9938 .9980 .9993 .9996 1.000

(λ3, ρ3) n1 .0131 .0332 .0332 .0158 .2108 .3314 .3314 .3180 .6538 .7871 .7871 .8172
n2 .0198 .0369 .0369 .0324 .4400 .5603 .5603 .6673 .9088 .9551 .9551 .9882
n3 .0236 .0350 .0360 .0485 .7913 .8489 .9481 .9908 .9896 .9965 .9993 1.000
n4 .0280 .0400 .0401 .0405 .9159 .9437 .9571 .9937 .9978 .9995 .9996 1.000

ARE 59.32 28.65 28.03 32.88

(λ1, ρ1) = (13, 0), (λ2, ρ2) = (1, 5, 0.1, 0.05) and (λ3, ρ3) = (1, 3, 0.1, 0.09). n1 = (7, 7, 7)10, n2 = (10, 10, 10)10,
n3 = (10, 20, 40)10 and n4 = (30, 20, 15)10.

when their P-values are less than the nominal significance level α. In all the simulations conducted, we
used α = 5% for simplicity.

To save space, here we just report the simulation results for interaction effect tests. Similar conclusions
may be drawn from the simulation results for main effect tests. We used the equal weight method to
specify the weights of the LHT3 and AHT tests so that their simulation results are comparable with
those of the LHT1 and LHT2 tests. The empirical sizes and powers of the four tests for interaction effect
tests, together with the associated tuning parameters, are presented in Tables 1– 3, in the columns
labeled with LHT1,LHT2,LHT3, and AHT under “δ = 0” and “δ > 0” respectively. As seen from the
three tables, three sets of the tuning parameters for the cell covariance matrices are examined, with
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Table 3. Empirical sizes and powers of interaction-effect test for two-way MANOVA (p = 10).

a = 3, b = 5, Σ1j = I10, Σ2j = diag(λ), Σ3j = diag(η), j = 1, 2, ..., 5.

δ = 0 δ = 4.2 δ = 6.3

Error (λ,η) n LHT1 LHT2 LHT3 AHT LHT1 LHT2 LHT3 AHT LHT1 LHT2 LHT3 AHT

N(0, 1) (λ1,η1) n1 .0278 .0469 .0469 .0421 .6215 .6950 .6950 .5866 .9894 .9937 .9937 .9789
n2 .0447 .0519 .0519 .0541 .9818 .9850 .9850 .9763 1.000 1.000 1.000 1.000
n3 .0329 .0491 .0495 .0507 .8196 .8653 .9015 .8358 .9997 .9998 1.000 .9996
n4 .0351 .0500 .0512 .0523 .9509 .9635 .9745 .9541 1.000 1.000 1.000 1.000

(λ2,η2) n1 .0313 .0655 .0655 .0608 .1287 .2142 .2142 .3159 .3733 .5172 .5172 .7327
n2 .0451 .0671 .0671 .0552 .3915 .4739 .4739 .7342 .8913 .9297 .9297 .9971
n3 .0349 .0634 .0639 .0544 .2004 .2808 .3055 .4462 .5734 .6797 .7305 .9139
n4 .0347 .0635 .0672 .0543 .3699 .4865 .4607 .7161 .8916 .9382 .9166 .9951

(λ3,η3) n1 .0284 .0512 .0512 .0607 .0467 .0762 .0762 .1109 .0687 .1099 .1099 .1858
n2 .0396 .0517 .0517 .0536 .0867 .1048 .1048 .1778 .1662 .1986 .1986 .4405
n3 .0351 .0498 .0510 .0517 .0713 .0924 .0898 .1248 .1432 .1786 .1720 .2801
n4 .0322 .0493 .0484 .0680 .0515 .0737 .0816 .1823 .0931 .1249 .1489 .3913

ARE 29.70 11.53 12.65 12.28

t4/
√

2 (λ1,η1) n1 .0191 .0458 .0458 .0402 .5617 .7003 .7003 .6468 .9761 .9938 .9938 .9877
n2 .0311 .0451 .0451 .0426 .9744 .9856 .9856 .9852 1.000 1.000 1.000 1.000
n3 .0226 .0461 .0453 .0436 .7752 .8632 .8974 .8744 .9965 .9996 1.000 .9998
n4 .0253 .0486 .0471 .0496 .9302 .9613 .9739 .9699 .9991 1.000 1.000 1.000

(λ2,η2) n1 .0185 .0557 .0557 .0454 .0967 .2168 .2168 .3517 .3218 .5363 .5363 .8054
n2 .0303 .0585 .0585 .0489 .3539 .4807 .4807 .7763 .8681 .9288 .9288 .9981
n3 .0287 .0597 .0589 .0452 .1708 .2879 .3107 .4982 .5339 .6857 .7346 .9449
n4 .0234 .0592 .0615 .0451 .3398 .4977 .4657 .7645 .8641 .9377 .9186 .9969

(λ3,η3) n1 .0183 .0461 .0461 .0566 .0300 .0676 .0676 .0972 .0445 .1029 .1029 .1905
n2 .0334 .0514 .0514 .0461 .0699 .1009 .1009 .1865 .1517 .2043 .2043 .4777
n3 .0280 .0466 .0478 .0414 .0611 .0940 .0926 .1313 .1214 .1737 .1667 .2971
n4 .0235 .0489 .0483 .0678 .0404 .0755 .0821 .1844 .0682 .1199 .1496 .4290

ARE 49.63 9.550 10.08 12.72

λ1 = (110)5, η1 = (110)5; λ2 = (123, 13, 243, 1)5, η2 = (13, 0.13, 22, 24, 21)5 and λ3 = (13, 33, 93, 20)5, η3 =
(53, 153, 453, 50)5. n1 = (253)5, n2 = (503)5, n3 = (25, 35, 45)5 and n4 = (70, 50, 30)5.

the first set specifying the homogeneous cases; four sets of the cell sizes are specified, with the first two
sets specifying the balanced cell size cases; and the two error schemes are considered. To measure the
overall performance of a test in terms of maintaining the nominal size α, we define the average relative
error as ARE = 100M−1∑M

j=1 |α̂j − α|/α where α̂j denotes the j-th empirical size for j = 1, 2, · · · ,M ,
α = 5% and M is the number of empirical sizes under consideration. The smaller ARE value indicates
the better overall performance of the associated test, and for a good test, the larger the cell sizes, the
smaller the ARE values. The ARE values of the four tests under the two error schemes are also presented
in these three tables. Notice that for simplicity, in the specification of the cell covariance and size tuning
parameters, we often use (ur) to denote “u repeats r times ”. For simplicity and space saving, following
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[15], the cell covariance matrices and the cell sizes were specified as the same for the b levels of factor
B but they may be different for the a levels of factor A. That is, for each i = 1, 2, · · · , a, we have
Σij = Σi1, nij = ni1, j = 1, 2, · · · , b. The above method for specifying the cell covariance matrices and
the cell sizes will have no effect on our methodologies and conclusions on general designs. Table 1 shows
the empirical sizes and powers of the four tests for a bivariate case with a = 2 and b = 20. With b = 20,
one may be able to check how the four tests behave when one of the factors has a large number of levels.
Tables 2 and 3 show the empirical sizes and powers of the four tests for a 3-variate case with a = 3 and
b = 10 and a 10-variate case with a = 3 and b = 5 respectively. These two tables allow us to compare the
four tests for higher-dimensional normal and non-normal data.

We first compare the LHT1,LHT2, LHT3, and AHT tests under the N(0, 1) error scheme. Overall
speaking, the LHT1 test is outperformed by the other three tests in terms of size controlling and power. In
terms of size controlling, the LHT1 test is generally too conservative while the other three tests maintain
the nominal size very well as summarized by the ARE values of the four tests. In terms of power, the
LHT1 test generally has lower powers than the other three tests. This is probably due to the fact that
the empirical sizes of the LHT1 test are generally smaller than those of the other three tests. We now
compare the last three tests in more details. Although these three tests are generally comparable in terms
of size controlling and power, slight differences still can be found. We notice that the LHT2 and LHT3
tests perform quite similarly and they are even identical for homogeneous and balanced cases. This is
not a surprise since they are constructed in a similar way and use the same approaches to compute the
approximate degrees of freedom. We also notice that in terms of size controlling, the LHT2 and LHT3 tests
generally outperform the AHT test as indicated by the ARE values of the three tests. This is probably
due to the fact that the LHT2 and LHT3 tests use two tuning parameters while the AHT test uses only
one. In terms of power, the LHT2 and LHT3 tests generally have higher powers than the AHT test for
homogeneous cases. This is probably due to the fact that the LHT2 and LHT3 tests are constructed in a
similar way as the way the classical LHT test is constructed for homogeneous cases. For heteroscedastic
cases, however, the AHT test generally has higher powers than the LHT2 and LHT3 tests.

Under the t4/
√

2 error scheme, we can draw similar conclusions as mentioned above except that
the empirical sizes for the four tests are now slightly smaller. It is reasonable since all these modified
MANOVA tests have not taken the data non-normality into account.

4 A Real Data Example

In this section, a real data set from a smoking cessation trial is used to illustrate and compare the
LHT1,LHT2,LHT3,AHT tests and the classical LHT test as well. The smoking cessation trial is part of a
large clinical trial about a behavioral intervention to promote smoking cessation among college student
smokers [16]. The subjects are students with a low and high degree of depression and from 20 individual
fraternity or sorority chapters (Greek houses) of the University of Missouri-Colombia. The researchers
believed that the level of depression of each subject is highly associated with the nicotine dependence of
the subject and they also wanted to know whether the nicotine dependence of the subjects depended
on the chapter they came from. The nicotine dependence can be measured by three well-known scales,
namely, the Fagerstöm Test for Nicotine Dependence [17], the Hooked on Nicotine Checklist [18], and the
Minnesota Tobacco Withdrawal Scale [19]. The resulting data may be referred to as the smoking cessation
data which can be analyzed by a heteroscedastic two-way MANOVA model as in [9], [10], and [11].

We applied the LHT1,LHT2,LHT3,AHT tests and the classical LHT test as well to the smoking
cessation data for checking the significance of the main and interaction effects of the two factors: Chapter
and Depression. The test results are listed in Table 4. Both the equal-weight method and the size-adapted-
weight method, as described in Section 2.1, were considered. The F -values, P -values and the associated
degrees of freedom of all the tests were computed using the F -approximation method.

We first compare the results of the five tests under the equal-weight method. As seen from Table 4, all
of the five tests lead to the same conclusion about the effect of Depression. However, different conclusions
about the main-effect of Chapter and the interaction-effect between Chapter and Depression are obtained.
The P -values of LHTr, r = 1, 2, 3 and AHT tests all suggest that the main-effect of Chapter and the
interaction-effect between Chapter and Depression are not significant, while the classical LHT test
concludes that the main-effect of Chapter is significant at 5%, and the interaction-effect between Chapter
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Table 4. Test results for the smoking cessation data.

Method Test Chapter Depression Chapter×Depression
F-value P-value df1 df2 F-value P-value df1 df2 F-value P-value df1 df2

Equal-weight LHT 1.47 .015 57 911 21.8 0 3 305 1.29 .075 57 911
LHT1 1.08 .350 43.0 253 15.7 0 3 85.8 1.01 .465 43.0 253
LHT2 1.06 .384 34.4 182 15.6 0 3 62.0 .993 .487 34.4 182
LHT3 1.15 .261 39.2 247 15.6 0 3 62.0 1.00 .476 39.2 247
AHT 1.16 .257 57 90.5 15.6 0 3 62.0 .896 .669 57 90.5

Size-adapted-weight LHT 1.23 .124 57 911 23.0 0 3 305 1.29 .075 57 911
LHT1 - - - - - - - - - - - -
LHT2 - - - - - - - - - - - -
LHT3 1.17 .225 41.1 360 16.8 0 3 86.8 1.00 .476 39.2 247
AHT 1.17 .232 57 118 16.8 0 3 86.8 .896 .669 57 90.5

and Depression is significant at 10%, which is opposite to the ones obtained by LHTr, r = 1, 2, 3 and AHT
tests. [9] verified via using the univariate Levene test [6] that the cell covariance matrices homogeneity
assumption for the smoking cessation data is unlikely to be satisfied and a logarithm-transformation
could not effectively solve the problem. In light of this fact, the conclusions made by the LHTr, r = 1, 2, 3
and AHT tests are more trustworthy than those made by the classical LHT test since all the modified
LHT tests and AHT test take into account the heteroscedasticity of the data. The misleading conclusions
made by applying the classical LHT test in this example is a consequence of unreasonable homogeneity
assumption, which demonstrates that our modified MANOVA tests are really essential and necessary
when the problem of heteroscedasticity is serious. We would also like to point out that compared with the
classical LHT test, there exists a drastic drop in the second degrees of freedom, df2, of the approximate
F -distributions of the LHTr, r = 1, 2, 3 and AHT tests. As seen from Table 4, the df2’s values of the
classical LHT test are about 3 ∼ 5 times of those of its modified versions, and about 10 times of those of
the AHT test, which indicates a serious impact of the heteroscedasticity on the classical MANOVA tests.
Since the lower the degrees of freedom, the larger the value of F needed to be significant, this may also
provide some explanation why the modified LHTr, r = 1, 2, 3 and AHT tests get different conclusions on
the main-effect of Chapter and the interaction-effect. For the comparison among the LHTr, r = 1, 2, 3
and AHT tests, generally speaking, all these tests made consistent conclusions about the effects of the
two factors. On the other hand, differences in F -values, P -values and degrees of freedom of these tests
can also be seen clearly.

We next examine the test results under the size-adapted method. Notice that [9]’s LHT1 test and [10]’s
LHT2 test are not defined for the size-adapted method. The test results of our new LHT test and [11]’s
AHT test for the main and interaction effects of Chapter and Depression are consistent under both weight
methods. However, it is not the case for the classical LHT test. Actually, for the main-effect of Chapter,
the conclusion made by the LHT test under the equal-weight method is opposite to the one under the
size-adapted-weight method, showing some impact of the cell covariance matrices heteroscedasticity on
the classical LHT test.
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Appendix: Proofs

In this Appendix, we first state a useful lemma which was given and proved by [10] and then proceed to
give the proofs of the main results presented in this article.

Lemma 1. Let u1,u2, · · · ,um be mutually independent with ui ∼ Np(0,V i), i = 1, 2, · · · ,m. Let Q =
UTRU be a quadratic form of U = [u1,u2, · · · ,um]T where R = (rij) is an m × m non-negative
symmetric matrix. Then E(Q) =

∑m
i=1 riiV i and V (Q) =

∑m
i=1
∑m
j=1 r

2
ij [tr(V i)tr(V j) + tr(V iV j)]

where V (Q) denotes the total variation of Q.

Proof of Proposition 1. We first find fH so that H̃ ∼Wp(fH, Ip/fH) approximately via matching the
total variations of H̃ and H̃a where H̃a ∼Wp(fH, Ip/fH). It is easy to show that V (H̃a) = p(p+1)/fH. To
find V (H̃), notice that H̃ = Ω−1/2ETW EΩ−1/2 = ẼTW Ẽ where Ẽ = [̃̄ε11., · · · , ˜̄ε1b., · · · , ˜̄εa1., · · · , ˜̄εab.]T
with ˜̄εij. = Ω−1/2ε̄ij. ∼ Np(0,Ω−1/2ΣijΩ

−1/2/nij). Hence H̃ is a quadratic form of Ẽ . Applying
Lemma 1, together with the fact that tr(V 1V 2) = tr(V 2V 1), we have

V (H̃) =
a∑

i,α=1

b∑
j,β=1

w2
ij,αβ [tr(V ij)tr(V αβ) + tr(V ijV αβ)],
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where V ij = ΣijΩ
−1/nij , i = 1, · · · , a; j = 1, · · · , b. Equating V (H̃a) and V (H̃) leads to

fH = p(p+ 1)


a∑

i,α=1

b∑
j,β=1

w2
ij,αβ [tr(V ij)tr(V αβ) + tr(V ijV αβ)]


−1

.

We now proceed to find fG so that G̃ ∼Wp(fG, Ip/fG) approximately via matching the total variations
of G̃ and G̃a ∼Wp(fG, Ip/fG). Again, we have V (G̃a) = p(p+ 1)/fG. To find V (G̃), notice that under
the model (2.2), we have Ω−1/2Σ̂ijΩ

−1/2 ∼ Wp

(
nij − 1,Ω−1/2ΣijΩ

−1/2/(nij − 1)
)
. It follows that

G̃ = (ab)−1∑a
i=1
∑b
j=1 n

−1
ij Ω

−1/2Σ̂ijΩ
−1/2 is a Wishart-mixture [20]. Some simple algebra leads to

V (G̃) =
∑a
i=1
∑b
j=1 w

2
ij,ij(nij − 1)−1[tr2(V ij) + tr(V 2

ij)]. Then equating V (G̃a) and V (G̃) leads to

fG = p(p+ 1)


a∑
i=1

b∑
j=1

w2
ij,ij(nij − 1)−1[tr2(V ij) + tr(V 2

ij)]


−1

,

as desired. We now move to find the lower and upper bounds of fH and fG. To find the lower and
upper bounds of fH, set dH =

∑a
i,α=1

∑b
j,β=1 w

2
ij,αβ [tr(V ij)tr(V αβ) + tr(V ijV αβ)] and set Ṽ ij =

wij,ijΩ
−1/2ΣijΩ

−1/2/nij which is nonnegative definite. Then we have

a∑
i=1

b∑
j=1

Ṽ ij =
a∑
i=1

b∑
j=1

wij,ijΩ
−1/2ΣijΩ

−1/2/nij = Ip

so that
a∑
i=1

b∑
j=1

tr(Ṽ ij) =
a∑
i=1

b∑
j=1

p∑
k=1

λijk = p, (A.1)

where λijk, k = 1, 2, · · · , p are the eigenvalues of Ṽ ij . It is easy to see that Ip − Ṽ ij is also nonnegative
definite so that 0 ≤ λijk ≤ 1. It follows that tr(Ṽ ij) =

∑p
k=1 λijk ≤ p and tr(Ṽ 2

ij) =
∑p
k=1 λ

2
ijk ≤∑p

k=1 λijk = tr(Ṽ ij). By (A.1), we have

a∑
i=1

b∑
j=1

[tr2(Ṽ ij) + tr(Ṽ 2
ij)] ≤

a∑
i=1

b∑
j=1

[ptr(Ṽ ij) + tr(Ṽ ij)] = p(p+ 1). (A.2)

Notice that for any m nonnegative numbers a1, a2, · · · , am, we have
∑m
i=1 a

2
i ≥ (

∑m
i=1 ai)2/m. Then by

(A.1) again, we have

a∑
i=1

b∑
j=1

tr2(Ṽ ij) =
a∑
i=1

b∑
j=1

(
p∑
k=1

λijk)2 ≥ [
a∑
i=1

b∑
j=1

p∑
k=1

λijk]2/(ab) = p2/(ab).

a∑
i=1

b∑
j=1

tr(Ṽ 2
ij) =

a∑
i=1

b∑
j=1

p∑
k=1

λ2
ijk ≥ [

a∑
i=1

b∑
j=1

p∑
k=1

λijk]2/(abp) = p/(ab).

It follows that
a∑
i=1

b∑
j=1

[tr2(Ṽ ij) + tr(Ṽ 2
ij)] ≥ p(p+ 1)/(ab). (A.3)

Notice that we can write
W = CT (CDCT )−1C = ATA

where A = (CDCT )−1/2C = (a11, · · · ,a1b, · · · ,aa1, · · · ,aab)T so that we have wij,αβ = aTijaαβ . It
follows from the Cauchy-Schwarz inequality that w2

ij,αβ ≤ wij,ijwαβ,αβ . Therefore, 0 ≤ ρij,αβ ≤ 1

14 Journal of Advanced Statistics, Vol. 1, No. 1, March 2016

JAS Copyright © 2016 Isaac Scientific Publishing



where ρij,αβ = wij,αβ√
wij,ijwαβ,αβ

. Since dH =
∑a
i,α=1

∑b
j,β=1 ρ

2
ij,αβ [tr(Ṽ ij)tr(Ṽ αβ) + tr(Ṽ ijṼ αβ)], we have

dH ≤
∑a
i,α=1

∑b
j,β=1[tr(Ṽ ij)tr(Ṽ αβ) + tr(Ṽ ijṼ αβ)] = tr2(Ip) + tr(I2

p) = p(p + 1). It follows that
fH ≥ 1. To find the upper bound of fH, notice that Ṽ ij is nonnegative definite so that tr(Ṽ ij) ≥ 0 and
tr(Ṽ ijṼ αβ) ≥ 0. Thus, dH ≥

∑a
i=1
∑b
j=1[tr2(Ṽ ij) + tr(Ṽ 2

ij)]. By (A.2), we have dH ≥ p(p+ 1)/(ab) so
that fH ≤ ab.

We now find the lower and upper bounds of fG. Set dG =
∑a
i=1
∑b
j=1 w

2
ij,ij(nij − 1)−1[tr2(V ij) +

tr(V 2
ij)]. Using the definition of Ṽ ij , we have dG =

∑a
i=1
∑b
j=1(nij − 1)−1[tr2(Ṽ ij) + tr(Ṽ 2

ij)]. By (A.2),
we have

dG ≤ (nmin − 1)−1
a∑
i=1

b∑
j=1

[tr2(Ṽ ij) + tr(Ṽ 2
ij)] ≤ (nmin − 1)−1p(p+ 1).

Thus, fG ≥ nmin − 1. Now by (A.3), we have

dG ≥ (nmax − 1)−1
a∑
i=1

b∑
j=1

[tr2(Ṽ ij) + tr(Ṽ 2
ij)] ≥ (nmax − 1)−1p(p+ 1)/(ab).

Thus, fG ≤ ab(nmax − 1). The proposition is proved.
Proof of Proposition 2. Let the parameters and their estimators associated with the new data resulted
from the affine-transformation (2.23) be labeled with a superscript “0”. For example, µ0

ij and µ̂0
ij

denote the (ij)th cell mean vector and its estimator based on the new data. Then under the affine-
transformation (2.23), we have µ0

ij = Aµij +ξ, Σ0
ij = AΣijA

T , µ̂0
ij = Aµ̂ij +ξ, Σ̂

0
ij = AΣ̂ijA

T . Thus,
M0 = MAT + 1abξT and M̂

0
= M̂AT + 1abξT . It follows that the GLHT problem (2.9) associated with

the new data now becomes H0
0 : CM0 = C0

0, vs H0
1 : CM0 6= C0

0, where C0
0 = C0A

T +C1abξT . Then
CM̂

0
− C0

0 = (CM̂ − C0)AT . Based on the above results and the fact that W = CT (CDCT )−1C
has nothing to do with the affine-transformation (2.23), after some simple algebra, we can show that
H0 = AHAT , G0 = AGAT , Ω0 = AΩAT , and V 0

ij = AV ijA
−1, V̂

0
ij = AV̂ ijA

−1, i = 1, · · · , a; j =
1, · · · , b. These results imply that under the affine-transformation (2.23), the modified MANOVA test
statistics defined in (2.22) are invariant and the approximate degrees of freedom fH and fG given in
Proposition 1 and their estimators are also invariant. The proposition is proved.
Proof of Proposition 3. It is sufficient to show that H,G, fH and fG are invariant under (2.24). Under
(2.24), we have C̃M̂ − C̃0 = P (CM̂ −C0), and (C̃DC̃T )−1 = (P−1)T (CDCT )−1P−1. It follows that
W̃ = C̃

T [C̃DC̃T ]−1C̃ = W . Then the invariance of the SSCP matrices H and G follows from (2.11)
and (2.15) immediately and the invariance of fH and fG follows from the formulas of fH and fG given
in Proposition 1 and the fact that every entry of W is invariant under (2.24). The proposition is then
proved.
Proof of Proposition 4. It is sufficient to show that H,G, fH and fG are invariant under different
labeling schemes of the cell mean vectors. Let i1, i2, · · · , ia and j1, j2, · · · , jb be any permutations of
1, 2, · · · , a and 1, 2, · · · , b respectively. Write C = [c11, c12, · · · , cab] where cij denotes the (ij)th column
of C. Now CM̂ =

∑a
i=1
∑b
j=1 cijµ̂

T
ij =

∑a
u=1

∑b
v=1 ciujv µ̂

T
iujv and G =

∑a
i=1
∑b
j=1 wij,ijΣ̂ij/nij =∑a

u=1
∑b
v=1 wiujv,iujv Σ̂iujv/niujv , showing that the SSCP matricesH and G are invariant under different

labeling schemes of the cell mean vectors.
To show that the approximate degrees of freedom fH and fG are invariant under different labeling

schemes of the cell mean vectors, by Proposition 1, it is sufficient to show that the denominators of fH

and fG have such a property. This is actually the case by noticing that the denominator of fH:

a∑
i,α=1

b∑
j,β=1

w2
ij,αβ [tr(V ij)tr(V αβ) + tr(V ijV αβ)] =

a∑
iu,αu=1

b∑
jv,βv=1

w2
iujv,αuβv [tr(V iujv )tr(V αuβv ) + tr(V iujvV αuβv )],
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where we have used the fact that V ij = ΣijΩ
−1/nij and Ω is invariant under different labeling schemes

of the cell mean vectors. Similarly, we can show that the denominator of fG has such a property too. This
completes the proof of the proposition.
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