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Abstract Yu and Diao [1] studied the estimation problem under the Cox model with linearly
time-dependent covariates and with interval-censored (IC) data under the distribution-free set-up.
They proposed a modified semi-parametric MLE (MSMLE) and the simulation results suggest that
the MSMLE is consistent. In this paper, we establish the consistency of the MSMLE.
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1 Introduction

In this paper, we establish the consistency of the semiparametric estimator proposed in Yu and Diao
[1] under the proportional hazards (PH) model with a special continuous time-dependent covariates and
with interval-censored data.

Let Y be a continuous random variable, with the cumulative distribution function (cdf) FY , where
FY (t) = P (Y ≤ t). Its survival function is denoted by SY (t) = 1 − FY (t), its density function by fY (t),
and its hazard function by hY (t) = fY (t)

SY (t−) . Let z be a p × 1 covariate vector. We say that (z, Y ) follows
the PH (or Cox) model if the conditional hazard satisfies

h(t|z) = hY |z(t|z) = ho(t)eβz, for t < τ , (1.1)

where βz = β′z, β′ is the transpose of the p × 1 vector β, τ = sup{t : ho(t) > 0}, and ho is the hazard
function of Y |(z = 0). The PH model has been extended to the time-dependent covariates PH (TDCPH)
model (see [2] p.113). For instance, replace z in (1.1) by z = z(t) = uβg(t), where u is a time-independent
covariate, and g(t) is a function of the time t, e.g., g(t) = (t − a)1(t ≥ a), where 1(A) is the indicator
function of an event A (see [2] p.113). We shall call the latter case the PH model with linearly time-
dependent covariates (LDCPH model). Interval-censored (IC) data are (Li, Ri), i = 1, ..., n, where the
true survival time Yi ∈ (Li, Ri]. A realistic model for the IC data is the mixed case interval censorship
model (see [3]). One of its special case is the case 2 interval censorship model (C2 model) (see [4]).

The TDCPH model including the LDCPH model has been commonly used for right-censored (RC)
data. The semi-parametric estimation with IC data under the LDCPH model was first studied by Yu
and Diao [1], that is, h(t|z(t)) satisfies Eq. (1.1) with

Z(t) = U ∗ (t − a)1(t ≥ a), where U is a time-independent covariate vector, (1.2)

a is a real number and both β and So are unknown. As explained in their paper, this covariate Z(t)
is very typical and share the light on how to estimate (β, ho) under the PH model with IC data and
with other types of time-dependent covariates. Under the semi-parametric set-up, the typical estimation
approach for right-censored data is the partial likelihood estimation. However, it is well known that this
approach only works for right-censored data, but not for IC data (see, for example, Wong and Yu [5]).

The main findings about the LDCPH model in Yu and Diao [1] are as follows. (1) Even if the
parameter β is not a vector, β may not be identifiable if the support set (of the observable random
vector) contains only finitely many elements. This is quite different from the case of the PH model with
time-independent covariates, under which β is identifiable even if the support set contains only one point.
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(2) The generalized likelihood function needs to be modified, as it must be of the form of hazard functions
under the semi-parametric set-up in (1.2). Otherwise, there is no consistent estimator of β. (3) Several
naive modifications on the generalized likelihood function do not lead to consistent estimators. (4) A
modified semi-parametric MLE (MSMLE) was proposed and their simulation studies suggested that the
MSMLE of β is consistent.

In this paper, we prove the consistency of the MSMLE. The main difficulty in the proof is that there
may not exist a convergent subsequence of the estimates of ho in (1.1), but the MSMLE is in the form
of the estimate of ho. The paper is orgainized as follows. The MSMLE is introduced in Section 2. The
consistency of the MSMLE is established in Section 3. The proofs of some lemmas are put in Section 4.

2 The MSMLE

The generalized likelihood function with IC data (Li, Ri)’s is often given by

L∗ =
∏n

i=1 µS(·|·)(Ii|Zi), where µS(·|·)(Ii|Zi) = S(Li|Zi) − S(Ri|Zi) and Ii = (Li, Ri]. (2.1)

L∗ depends on the survival function S(t|z). Yu and Diao [1] showed that if S(t|z) satisfies the PH model
and is absolutely continuous, and Z = Z(t) = (t − a)U1(t ≥ a), then

S(t|z(t)) = exp(−
∫ t

0
eβu(x−a)1(t≥a)ho(x)dx)

=

{
So(t) if t ≤ a or u = 0
So(a) exp(−

∫ t

a
eβu(x−a)ho(x)dx) if t > a and u ̸= 0.

(2.2)

Hereafter, abusing notations, we write S(t|u) = S(t|z(t)) and h(t|u) = ho(t) exp(βu1(t ≥ a)(t − a)).
Notice that the two hazard functions ho(t) = 1(t > 0) and h1 = 1(t ∈ (0, 2) ∪ (2, ∞)) both lead
to So(t) = exp(−t) if t > 0. Since ho (or fo) can differ on a set A satisfying

∫
A

dFo(t) = 0, where

Fo = 1 − So, we define fo(t) =

{
F ′

o(t) if F ′
o(t) exists

0 otherwise
for identifiability of fo and ho. Let SF be the

support set of the cdf F or a measure dF , in the sense that x ∈ SF iff F (x + ϵ) − F (x − ϵ) > 0, ∀ ϵ > 0.
Proposition 1. (Yu and Diao [1]). The survival function S(t|u) is identifiable if t ∈ SFL

∪ SFR
. An

identifiability condition for β under the mixed case IC model is that SFL ∪ SFR contains infinitely many
points {tj}j≥1 with a limiting point, say to = limj→∞ tj in (a, ∞), provided that F ′

o(to) > 0.
An interval A is called an innermost interval (II) if it is an intersection of the observed intervals I1,

..., In, and if A ∩ Ii = A or ∅ for each Ii. It is well known (see [8]) that under the PH model with
time-independent covariates in order to maximize L∗, it suffices to put the weights of So to the II’s.
Moreover, the weight to each II is uniquely determined, but not the distribution of the weight within
the II. Let A1, ..., Am be all the II’s induced by Ii’s and let (vj , wj) be the pair of endpoints of Aj ,
where w0 = −∞ < w1 < w2 < · · · < wm ≤ ∞. For each i, let ξi = 1(Ri < wm) and define li and ri by
wri ≤ Ri < wri+1 and wli ≤ Li < wli+1. Then the likelihood function in (2.1) becomes

L1(β, So) =
∏

Ri≤a or ui=0

(So(wli) − So(wri))

·
∏

Li<a<Ri,ui ̸=0

{So(wli) − ξiSo(a) exp(−
∑

wj∈[a,Ri]

∫ wj

vj

eβ(x−a)ho(x)dx)} ·
∏

Li>a,ui ̸=0

So(a)

· [exp(−
∑

wj∈(a,Li]

∫ wj

vj

eβ(x−a)ho(x)dx) − ξi exp(−
∑

wj∈(a,Ri]

∫ wj

vj

eβ(x−a)ho(x)dx)].

(2.3)

Since ho is a function of x and needs to be properly defined on [vj , wj ] for all j < m (note that
So(wm) = 0), Yu and Diao proposed to modify the likelihood as follows.

First, let ho(x) = 0 if x /∈ ∪k(vk, wk], where (v1, w1], ..., (vm, wm] are all the II’s. Moreover, notice
that each (vk, wk] will be contained by several modified observed intervals Ii’s (see Remark 2 in Yu and
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Diao [1]) with J (≥ 1) distinct values of ui’s, where J depends on k. There are two types of (vk, wk): (1)
wk − vk ≈ 0, or wk ≤ a, or wk − a ≈ 0 and a ∈ (vk, wk]; (2) otherwise. For k < m, define

ho(x) =

{
constant on (vk, wk] if (vk, wk) belongs to type (1)

J-piece-wise constant on (vk, wk] if (vk, wk) belongs to type (2)

(in particular, if (vk, wk) belongs to type (2), then

ho(x) =
J∑

j=1
hkj1(x ∈ (vkj , wkj ]) for x ∈ (vk, wk], (2.4)

where vk = vk1, wk1 = vk2, wk2 = vk3, ..., wkJ = wk, wkj − vkj =

{
wk−vk

J if a ∈ (vk, wk], j ∈ {1, ..., J}
wk−vk

J−1 if a /∈ (vk, wk], j ∈ {2, ..., J}
and hkj ’s are constant.

If k = m, simply define So(wm) = 0 (ho can be arbitrary on (vm, wm], provided that ho ≥ 0 and∫ wm

vm
ho(x)dx = ∞). Abusing notations, let (aj , bj ] be the interval in which ho is constant, as specified in

(2.4). Then ho(x) =
∑

j hj1(x ∈ (aj , bj ]), where hj is a constant and (aj , bj ] may not be an II. Then L1
in (2.3) becomes

L(β, So) =
n∏

i=1
(S(Li|Ui) − S(Ri|Ui))

=
∏

Ri≤a, or ui=0

{
exp(−

∑
bj≤Li

hj [bj − aj ])[1 − exp(−
∑

bj∈(Li,Ri]

hj [bj − aj ])]ξi

}

·
∏

Li≥a,ui ̸=0

{
So(a) exp(−e−auiβ

uiβ

∑
bj∈(a,Li]

hj [euiβbj − euiβaj ])

· [1 − exp(−e−auiβ

uiβ

∑
bj∈(Li,Ri]

hj [euiβbj − euiβaj ])]
}

·
∏

Li<a<Ri,ui ̸=0

{
exp(−

∑
bj≤Li

hj [bj − aj ]ξi)

· [1 − exp(−
∑

bj∈(Li,a]

hj(bj − aj) − e−auiβ

uiβ

∑
bj∈(Li,Ri]

hj [euiβbj − euiβaj ])]ξi

}
.

(2.5)

The MSMLE maximizes L over all hj ’s and β. It is well known that the Newton Raphson method does
not work for deriving the SMLE or the MSMLE under the PH model with IC data (see Wong and Yu
[5]). Yu and Diao [1] suggested to use the steepest decent method.

3 Consistency

In order to simplify the presentation of the proof of consistency, we shall only make use of the C2
model and assume that β ∈ (−∞, ∞). The C2 model assumes that C1 and C2 are two random follow-
up times, (L, R) = (−∞, C1)1(Y ≤ C1) + (C1, C2)1(Y ∈ (C1, C2]) + (C2, ∞)1(Y > C2), (C1, C2) and
(Y, U) are independent, and P (C1 < C2) = 1. Define a measure µ on the Borel σ-field B on R1 by
µ(B) = P (C1 ∈ B)+P (C2 ∈ B), B ∈ B. Assume that (Li, Ri, Ui)’s are i.i.d. from FL,R,U (def= Q). Denote
Q̂ = Q̂(x, y, z) =

∑n
i=1 1(Li ≤ x, Ri ≤ y, Ui ≤ z)/n.

Theorem 1. Assume that the censoring satisfies the C2 model, S(t|u) satisfies (2.2), the identifiable
condition in Proposition 1 holds, and U takes on at least two distinct values. Then

∫
|Ŝn −So|dµ

a.s.→ 0 and
β̂n

a.s.→ β, where (Ŝn, β̂n) is obtained by maximizing L in (2.5).
Let Ω be the sample space. In order to prove Theorem 1, we shall make use of the next 3 lemmas.
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Lemma 1. Suppose that {µn}n≥1 is a sequence of measures on the measurable space (A, Σ) such that
µn(B) → µ(B), ∀ B ∈ Σ. Let {fn}n≥1 be a sequence of non-negative integrable functions. Then∫

A lim
n→∞

fn dµ ≤ lim
n→∞

∫
A fn dµn.

Lemma 2. P (ΩQ̂) = 1, where ΩQ̂ = {ω ∈ Ω : supx,y,z |Q̂(x, y, z)(ω) − Q(x, y, z)(ω)| → 0}.

Lemma 3. Given ω ∈ Ω, for each sub-sequence of {Ŝn(·|·)}n≥1, there exists a further subsequnce, say
{Ŝnj (·|·)}j≥1 and a function S∗(·|·) such that Ŝnj (t|u) → S∗(t|u) for each (t, u).

Lemma 1 is Fatou’s Lemma with varying measures. It is almost the same as Proposition 17 in [7]
(page 231), and so is its proof. Thus we skip the proof of Lemma 1. Lemma 2 is the multvariate version
of the Glivenko - Cantelli theorem. Eddy and Hartigan [8] presented a similar version of Lemma 2 with
certain addtional regularity conditions such as P ((L, R, U) ∈ B) = 0, where B is the boundary of SFL,R,U

.
However, P (B) > 0 under the assumptions in this paper. Thus their result is not applicable here. Lemma
3 is a variation of Helly’s selection theorem. The proofs of Lemmas 2 and 3 are relegated to Section 4 for
a better presentation.
Proof of Theorem 1. We shall give the proof in 3 steps.

Step 1 (preliminary). Let S
(ub)
∗ (t) = S∗(t|u) = exp(−

∫ t

0 eu(s−a)b1(s>a)h∗(s)ds), where h∗ is a hazard
function and let S∗ = S

(0)
∗ and F∗ = 1 − S∗. By Eq. (2.5), the normalized generalized log-likelihood is

Ln(S∗, b) = 1
n

n∑
j=1

log(S(ujb)
∗ (Lj) − S

(ujb)
∗ (Rj)). By the strong law of large numbers (SLLN),

Ln(S∗, b)a.s.→ Lo(S∗, b)(def= E(Ln(S∗, b))).

Let wS∗(c1, c2, U) = F (c1|U) log F∗(c1|U) + S(c2|U) log S∗(c2|U) + (S(c1|U) − S(c2|U)) log(S∗(c1|U) −
S∗(c2|U)). Then

Lo(S∗, b) =E(Ln(S∗, b)) = E(log(S∗(L|U) − S∗(R|U)))
=E(E(log(S∗(L|U) − S∗(R|U)))|U)
=E(E(wS∗(C1, C2, U)|U)).

Step 2 ⊢: Lo(S∗, b) is maximized iff S∗(t|u) = S(t|u) for each (t, u) ∈ Sµ × SFU and b = β.
It is easy to check that the expression wS∗(c1, c2, u) is maximized by a conditional survival func-

tion S∗(·|·), if and only if S∗(ci|u) = S(ci|u), i ∈ {1, 2}. Since sup{|p log p| : 0 ≤ p ≤ 1} ≤ 1,
wS∗(c1, c2, u) is bounded by 3, we see that Lo(S∗, b) is finite. Thus S(·|·) maximizes Lo(S∗, b). More-
over, by Eq. (2.2), S(t|u) = exp(−

∫ t

0 eβu(x−a)1(t≥a)ho(x)dx) is continuous in (t, u), thus any other S∗(·|·)
that maximizes Lo(S∗, b) satisfies S∗(·|u) = S(·|u) on Sµ × SFU

. Furthermore, notice that one can write
S(t|u) = exp{−

∫ t

0 e(u−uo)β(s−c)1(s>c)h1(s)ds}, where uo ∈ SFU and h1(s) = euoβ(s−c)1(s>c)ho(s). With-
out loss of generality (WLOG), we can assume that 0 ∈ SFU

. Thus S∗(t|0) = S(t|0) for t ∈ Sµ. Now,
S∗(t|u) = exp{−

∫ t

0 eub(s−c)1(s>c)ho(s)ds}, We shall show that b = β. Since the identifiable conditions in
Proposition 1 hold, for to and tk ∈ SFC1

∪ SFC2
satisfying tk → to and F ′

o(to) > 0,

h∗(to) = lim
tk→to

− log(S∗(tk|0)) − (− log(S∗(to|0))
tk − to

= lim
tk→to

− log(So(tk)) − (− log(So(to))
tk − to

= lim
tk→to

∫ tk

0 ho(s)ds −
∫ to

0 ho(s)ds

tk − to
= ho(to).
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By assumption, there exists some u ̸= 0, then

eub(to−a)1(to≥a)h∗(to) = lim
tk→to

− log(S(tk|0)) − (− log(S(to|0))
tk − to

= lim
tk→to

− log(S(ub)
o (tk)) − (− log(S(ub)

o (to))
tk − to

= lim
tk→to

∫ tk

0 eu(s−a)β1(s>a)ho(s)ds −
∫ to

0 eu(s−a)β1(s>a)ho(s)ds

tk − to

= eu(to−a)β1(to≥a)ho(to).

Thus, we must have eu(to−a)b1(to≥a)h(to) = eu(to−a)β1(to≥a)ho(to) and h(to) = ho(to), as F ′
o(to) > 0.

Then ho(to) > 0, which means b = β. That is, Lo(S, b) is maximized by (So, β). This proves the claim.
Step 3 (final conclusion). Let Ωo = {ω : limn→∞ Ln(So, β) = Lo(So, β)}∩ΩQ̂. It follows from the SLLN
and Lemma 2 that P (Ωo) = 1. Hereafter, fix an ω ∈ Ωo.

By Lemma 3, given any subsequence {ni}i≥1 of {n}n≥1, there exist a futher subsequence, say itself
such that Ŝni(t|u) → S∗(t|u) for each (t, u). Moreover, since β̂ni ∈ (−∞, ∞), there is a subsequence
which converges to b ∈ [−∞, ∞]. WLOG, we can assume that Ŝn(·|·) → S∗(·|·) and β̂n → b. Then

lim
n→∞

Ln(Ŝn, β̂n) = lim
n→∞

∫
∆

log(Ŝn(l|u) − Ŝn(r|u))dQ̂(l, r, u)

= − lim
n→∞

∫
∆

− log(Ŝn(l|u) − Ŝn(r|u))dQ̂(l, r, u))

≤ −
∫

∆

lim
n→∞

− log(Ŝn(l|u) − Ŝn(r|u))dQ̂(l, r, u) (by Lemma 1,

(3.1)

as (1) Q̂(η) → Q(η) for every Borel subset η of ∆ = {(l, r, u) : −∞ ≤ l < r ≤ ∞, u ∈ (−∞, ∞)} and (2)
− log(Ŝn(l|u) − Ŝn(r|u)) ≥ 0). Consequently,

Lo(So, β) ≤ lim
n→∞

Ln(Ŝn, β̂n) (as Ln(So, β) ≤ Ln(Ŝn, β̂n))

≤ −
∫

∆

lim
n→∞

− log(Ŝn(l|u) − Ŝn(r|u))dQ̂(l, r, u) (by (3.1))

=
∫

∆

log(S∗(l|u) − S∗(r|u))dQ(l, r, u) (as Ŝn(t|u) → S∗(t|u))

= Lo(S∗, b)
≤ Lo(So, b) (by the claim in Step 2), ∀ ω ∈ Ωo.

Notice that P (Ωo) = 1. Thus S∗ = So a.s. µ and b = β by the claim in Step 2. .

4 Proofs

Proof of Lemma 2. Given ϵ = 1/k, there exist x1, ...., xm, y1, ...., ym, z1, ...., zm ∈ (−∞, ∞]
such that max{P (L ∈ (xi−1, xi)), P (R ∈ (yi−1, yi))P (U ∈ (zi−1, zi))} < ϵ for i ∈ {1, ..., m}, where
x0 = y0 = z0 = −∞ and xm = ym = zm = ∞. Let Ωk be the event that maxi,j,h{|Q̂(xi, yj , zh) −
Q(xi, yj , zh)| + |F̂L(xi−) − FL(xi−)| + |F̂R(yj−) − FR(yj−)| + |F̂U (zh−) − FU (zh−)|} → 0. Since m is
finite, P (Ωk) = 1. Let ω ∈ Ωk. There exists no such that

|Q̂(xi, yj , zh) − Q(xi, yj , zh)| < ϵ,
|Q̂(xi−, ∞, ∞) − Q(xi−, ∞, ∞)| < ϵ,
|Q̂(∞, yj−, ∞) − Q(∞, yj−, ∞)| < ϵ,
|Q̂(∞, ∞, zh−) − Q(∞, ∞, zh−)| < ϵ, ∀ i, j, h ∈ {0, 1, 2, ..., m}.
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Now ∀ (x, y, z), ∃ some (i, j, h) such that (x, y, z) ∈ (xi−1, xi] × (yj−1, yj ] × (zh−1, zh]. If (x, y, z) =
(xi, yj , zh), then |Q̂(x, y, z) − Q(x, y, z)| < ϵ. Otherwise, there are 12 disjoint cases such as:

(1) x ∈ (xi−1, xi), y ∈ (yj−1, yj) and z ∈ (zh−1, zh);
(2) x ∈ (xi−1, xi), y = yj and z ∈ (zh−1, zh);
(3) x ∈ (xi−1, xi), y ∈ (yj−1, yj) and z = zh;
(4) x ∈ (xi−1, xi), y = yj and z = zh; etc.

In each of the 12 cases, we can also show that |Q̂(x, y, z) − Q(x, y, z)| < ϵ. For instance, in Case (1),

|Q̂(x, y, z) − Q(x, y, z)|
≤|Q̂(xi−, yj−, zh−) − Q(xi−1, yj−1, zh−1)| + |Q(xi−, yj−, zh−) − Q̂(xi−1, yj−1, zh−1)|
≤|Q̂(xi−, yj−, zh−) − Q(xi−, yj−, zh−) + Q(xi−, yj−, zh−) − Q(xi−1, yj−1, zh−1)|

+ |Q̂(xi−1, yj−1, zh−1) − Q(xi−1,zh−1 , yj−1, zh−1) + Q(xi−1, yj−1, zh−1) − Q(xi−, yj−, zh−)|
≤ |Q̂(xi−, yj−, zh−) − Q(xi−, yj−, zh−)|︸ ︷︷ ︸

≤ϵ

+ |Q(xi−, yj−, zh−) − Q(xi−1, yj−1, zh−1)|︸ ︷︷ ︸
≤(FL(xi−)−FL(xi−1))+(FR(yj−)−FR(yj−1))+(FU (zh−)−FU (zh−1))

+ |Q̂(xi−1, yj−1, zh−1) − Q(xi−1, yj−1, zh−1)| + |Q(xi−1, yj−1, zh−1) − Q(xi−, yj−, zj−)|
≤8ϵ, (as ω ∈ Ωk).

In Case (4), |Q̂(x, y, z) − Q(x, y, z)|
≤|Q̂(xi−, yj , zh) − Q(xi−1, yj , zh)| + |Q(xi−, yj , zh) − Q̂(xi−1, yj , zh)|
≤|Q̂(xi−, yj , zh) − Q(xi−, yj , zh) + Q(xi−, yj , zh) − Q(xi−1, yj , zh)|

+ |Q̂(xi−1, yj , zh) − Q(xi−1,zh
, yj , zh) + Q(xi−1, yj , zh) − Q(xi−, yj , zh)|

≤ |Q̂(xi−, yj , zh) − Q(xi−, yj , zh)|︸ ︷︷ ︸
≤ϵ

+ |Q(xi−, yj , zh) − Q(xi−1, yj , zh)|︸ ︷︷ ︸
≤(FL(xi−)−FL(xi−1))

+ |Q̂(xi−1, yj , zh) − Q(xi−1, yj , zh)| + |Q(xi−1, yj , zh) − Q(xi−, yj , zj)|
≤4ϵ.

The proofs for the other 10 cases are similar and are skipped. Notice ϵ = 1/k → 0, P (Ωk) = 1 and thus
P (∩∞

k=1Ωk) = 1.
Proof of Lemma 3. Let {uj}j≥1 be the collection of all rational numbers. Since Ŝn(t|u1) is a sequence
of bounded decreasing functions in t, by Helly’s selection theorem, given any subsequence of {n}n≥1,
there exists a further subsequence, say {n1i}i≥1 such that Ŝn1i(t|u1) converges for each t. Moreover, for
j ≥ 2, there exists a subsequence, say {nji}i≥1 of {n(j−1)i}i≥1 such that Ŝnji(t|uj) converges for each t.
It is easy to verify that Ŝnii(t|uj) converges for each (t, uj), say Ŝnii(t|uj) → S1(t|uj).

In view of Eq. (2.2), write Ŝn(t|u) = Ŝ
(uβ̂n)
n (t) = exp(−

∫ t

0 euβ̂n(s−a)1(s>a)ĥn(s)ds). Ŝn(t|u) is a
bounded decreasing function of uβ̂n. Thus S1(t|uj) is a bounded decreasing function of buj . Since the
set of rational numbers {uj}j≥1 is dense in (−∞, ∞), S1(t|uj) can be extended to S1(t|u) for each
u ∈ (−∞, ∞) by letting S1(t|u) = limuj↓u S1(t|uj) if u is not a rational number. WLOG, we can assume
b ≥ 0, then S1(t|u) is a bounded decreasing function in u and is thus continuous except on a countable
subset, say D. We shall show that

Snii(t|u) → S1(t|u) ∀ t and ∀ u /∈ D. (A.1)

It suffices to consider the case that u /∈ D and u is not a rational number. Let w and v be two rationals
such that w < u < v. Since the set of rationals are dense, w and v can be selected as close to u as possible.
Then Snii(t|v) ≤ Snii(t|u) ≤ Snii(t|w). Verify that Snii(t|v)as i→∞→ S1(t|v)as v→u→ S1(t|u), as x = u is a
continuous point of S(t|x). Moreover, Snii(t|w)as i→∞→ S1(t|w)as w→u→ S1(t|u). By the sandwich theorem,
Snii(t|u) → S1(t|u). That is, (A.1) holds.
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Since D is countable, using the arguement similar to showing that Ŝnii(t|uj) converges for each
(t, uj), we can show that there is a subsequence of {nii}i≥1, say {mk}k≥1 ⊂ {nii}i≥1 such that Ŝmk

(t|u)
converges for each u ∈ D. Consequently, Ŝmk

(t|u) converges for each (t, u).
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