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Abstract. The one-dimensional, non-relativistic, quantum Morse oscillator is studied at the classical 
limit. In fact, near the classical limit, the energy eigenvalues relative to the eigenstates of the non-
relativistic, time-independent, Schrödinger equation with Morse potential are negative and 
approximately proportional to the square of the corresponding vibrational quantum number. Within 
this framework, the mass of the oscillator in question is found to be negative. This can take place in 
certain particle phenomena and, in fact, occurs, for instance, in semiconductor superlattices. These 
cases are outlined very briefly in the present paper.  
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1    Introduction 

The significant role of the Morse potential in Nuclear Physics and Molecular Physics is well-known. 
Really, the above potential has a great relevance within Particle Physics in its broad sense. Indeed, 
studying the behaviour of both relativistic and non-relativistic quantum particles under the Morse 
potential presents a wide variety of issues of much interest. It is well-known that the above (non-
relativistic) quantum anharmonic oscillators have a finite number of bound states and infinite number of 
unbound states. As a matter of fact, considering the one-dimensional case, the energy eigenvalues 
relative to the unbound states are negative and roughly proportional to the square of the involved 
vibrational quantum number. This corresponds to the anharmonic oscillator in question close to the 
classical limit so energy tends to minus infinity as the quantum number tends to infinity. But, 
unfortunately, in a certain part of the current literature, the existence of negative energy eigenvalues by, 
say, extrapolation to them of the general formula for the energy levels, is not understood.  

In the following, we will show that the mass of the aforementioned Morse oscillator must be negative 
near the classical limit. The one-dimensional case will be regarded. In addition, as notorious and 
interesting examples, we will discuss the role of electrons of negative mass in semiconductor superlattices 
[1-3] and, on the other hand, we will comment on cosmological as well as on Bose condensates and 
various elementary-particle questions dealing with the possibility of negative rest-mass [4,5]. In 
particular, with respect to semiconducting superlattices, we note that the fact that there are electrons 
with negative rest-mass mass in these structures comes from the existence of allowed and forbidden 
minibands formed from allowed and forbidden energy bands [1-3]. In this context, there are negative 
differential and absolute electrical conductivities [1-3]. Really, the above mentioned facts have great 
importance and will be discussed very briefly.  

2    Theoretical Formulation 

The energy eigenvalues of a (non-relativistic) quantum-mechanical particle under a one-dimensional 
Morse potential read:  
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where n  is the corresponding vibrational quantum number ( 0,1,2,...n = ) and ε  is an anharmonic 
coefficient. From formula (1) it follows that nE → −∞  as n → ∞  (classical limit) so that 2

nE nωε≈ −  
for sufficiently large n . Therefore, near the classical limit, the last expression for the quantized 
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vibrational energy equals the kinetic energy of the particle plus the Morse potential energy. This last 
energy is non-negative and is given by: 

 ( ) ( ){ }2

01 expV x D x xα⎡ ⎤= − − −⎣ ⎦   (2) 

where D  denotes potential depth, 0x  is the equilibrium coordinate of position, and α  is a parameter 
that “controls” the potential width. We assume 0x > , 0x x≥ . 

By the energy-conservation law above and taking into account relation (2), since now nE  is negative, 
then the kinetic energy must be negative with absolute value larger than ( )V x  so it is clear that the 
(quantized) kinetic energy of the particle must be 2 2nmv−  ( 0m > ), nv  being the magnitude of the 
(quantized) particle velocity, so the rest-mass of the particle must be negative and equal to m− . Under 
these conditions, for 0x x≈ (so, by (2), one has 0V ≈ ), considering that ( )4Dε ω= , and regarding 
the expression of the energy for n  near the classical limit, then it follows: 
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We wish to remark that formula (3) refers to that the Morse potential (see eq.(2)) becomes an ideal 
potential near the equilibrium position of the particle. This situation is similar to that of a non-
relativistic quantum particle in a one-dimensional, infinite, ideal potential well. In effect, for this well, 
we have: 
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where a  is the length of the well and now 1,2,...n =  
Equating approximately (4) to 2 2nmv−  (this is only valid for sufficiently large n ), then one gets: 
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Finally, equating (3) to (5), an equivalent angular frequency reads:  

 2D
a m
πω ≈   (6) 

For non-equilibrium enough in the Morse potential, that is, for, 0x x>> , expression (2) reduces to 
V D≈  so that, by the energy-conservation law, we have: 
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From formula (7) it follows:  
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On the other hand, inserting (6) into (3), one finds (5) as expected, while inserting (6) into (8), we 
get:  
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At any rate, for n  values such that 2 2 2 22n Dmaπ >> , formula (9) reduces to (5). In practice, the 
above inequality is satisfied for every quantum particle and, say, typical potential-well lengths if n  is 
sufficiently large. Therefore, we conclude that the particle velocity near its equilibrium position equals 
approximately the velocity far from the equilibrium position (consider formula (5)). 

The importance of our preceding formulation is significant to investigate, for instance, certain 
problems concerning Cosmology and Particle Physics [4]. In this context, negative mass can exist, for 
example, in non-asymptotically flat space-time [4]. On the other hand, negative mass has been found in 
a Bose condensate fluid [5]. Finally, we can find negative effective electron mass in semiconductor 
superlattices [1-3]. In these structures, allowed and forbidden bands are divided into a set of relatively 
narrow allowed and forbidden minibands with non-parabolic dispersion law. In a part of a given 
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miniband, the electron effective mass can change its sign so that it becomes negative [1-3]. Consequently, 
the superlattices may present nonlinear properties even under relatively small electric fields [1-3]. 

3    Conclusions 

The preceding analysis shows that particles with negative mass can exist under nonlinear conditions, for 
instance, in certain semiconductor structures [1-3]. In fact, we have proven this (within the framework of 
the Morse potential) by calculating the quantized particle velocity, arriving at formulae (3), (5), (6) and 
(9) as main results. It is clear that our formulation arises from considering the quantized particle energy 
(see relationship (1)) when the corresponding quantum number is sufficiently large so that the energy 
becomes negative. This extrapolation to (non-relativistic) quantum states of negative energy leads to the 
existence of negative mass. On the other hand, we should remark that a relativistic quantum 
formulation of the same, say, type as our formulation could be useful to explain phenomena as described 
in refs.[4,5]. Finally, one would mention refs.[6,7] as valuable work related indirectly to the present 
paper.  
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