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Abstract We suggest a physical definition of the confinement mass scale in QCD in the framework
of non-perturbative, gauge invariant QCD, where all possible gluons exchanged between any pair
of quark lines are included; and we insist that a stable, quark bound state should not and must not
have transverse quark fluctuations larger than the Compton wavelength of the bound state particle
itself. This is possible in our QCD formulation because there are two parameters which describe
confinement, a mass scale µ, and a “deformation parameter” ξ, which shrinks the transverse-quark-
coordinate separation distribution φ(b) away from Gaussian. With the mass scale µ defined as
equal to the mass of each quark bound state, we show that ξ decreases with increasing bound state
mass, mBS , using order-of-magnitude estimates which agree with obvious intuition. Our ξ-values,
including a calculation for the recently detected 4-quark system, display the predicted behavior:
ξ decreases with increasing mBS . Our results for φ(b), when the quark bound state is a nucleon
or heavier, then show agreement with the form of Gaussian momentum-space fall-offs in recent
Light-Front holographic analyses.
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1 Introduction

The purpose of these remarks is to suggest a physical definition of the confinement mass scale in QCD,
associated with the non-perturbative binding of quarks into hadrons by the gauge-invariant exchange
of all possible gluons between all relevant quarks, with cubic and quartic gluon interactions included
[1],[2],[3],[4],[5],[6]. For simplicity and clarity, the hadrons considered at first are “qualitative” in the
sense that only one flavor of quark is considered, in the absence of weak and electromagnetic effects,
simplifications which can easily be rectified; these hadrons will be denoted as pions and nucleons, plus
possible 4-quark states, and any possible future bound state of multi-quark systems. Correct quark flavors
and masses are used for a final computation.

The confinement scales defined here will turn out to be Different; but yet they are all the Same.
They are Different in that each stable bound state has a different mass scale, but they are the Same in
that the confinement mass scale always equals the mass of that bound state. This has a simple physical
basis in that the transverse fluctuations of the bound quarks which comprise the bound state particle
cannot and should not be larger than the Compton wavelength of that particle, thereby preventing a
plethora of unwanted interactions completely at variance with the experimentally observed properties of
a hadron. A “nucleon” whose electrically-charged quarks can naturally separate to distances much larger
than 10−13cm. is not a true nucleon but rather an unstable object waiting to be split into its constituent
quarks under atomic or external electromagnetic fields.

In order for this scheme to work there must be an additional parameter other than the mass scale,
which enters into the confinement analysis, and whose numerical value is able to change, if only slightly,
in the description of higher-mass bound states. This is the “deformation parameter” ξ of Ref. [2], wherein
the probability of transverse-quark-coordinate separation is given by a normalized distribution

φ(b) = φ(0)e−(µb)2+ξ

,

where for a pion, b is the transverse separation of a q − q̄ pair forming (the major component of) a pion,
µ is the mass scale such that transverse fluctuations larger than µ−1 give little contribution, and ξ is a
small, real, positive parameter on the order of 0.1 for this bound state [2]. The corresponding potential
V (r) binding this q − q̄ pair was there derived to be

V (r) ≈ ξµ(µr)1+ξ,
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and in the pion analysis of Ref. [2], µ was taken to be on the order of the pion mass, mπ. The change in
viewpoint expressed in this paper is that, for this pion calculation, µ = mπ, and that µ will be defined
as the bound state mass of any higher-mass particle, with a correspondingly small decrease in the value
of ξ.

There is a very simple, intuitive reason why one might expect a smaller ξ-value to appear for heavier
quark bound states. The probability function φ(b) is an essential part of the eikonal function Ξ(b), of
the high-energy scattering amplitude of a q and q̄; and with a well-defined relation [2] between Ξ(b) and
effective scattering/binding potentials, it is easy to obtain V (r) from Ξ(b) with no extra assumption of
a static q − q̄ situation, an assumption that is wrong in principle and in practice [1]-[6].

With this procedure it is instructive to ask what is the result for V (r) found for a perfect Gaussian,
with ξ = 0. Immediately, that calculation produces a zero result because a Gaussian is “too symmetric”,
and there is no reason to expect smaller, rather than larger values of b to be enhanced. However, for ξ > 0
such “enhancement” is intuitively clear, because φ(b) is “bunched” or “enhanced” for smaller values of b,
since φ(b) now falls off more rapidly than a Gaussian.

For the 3-quark problem, what value of ξ would be appropriate, and - intuitively - would it be larger or
smaller than that of the pion calculation, ξ ≈ 0.1? Here there are 3 quarks, with each of them exchanging
a Gluon Bundle with two other quarks; and a smaller value of ξ should be needed, since each quark
is being pulled by two others. One finds, below, that the qualitative solutions for ξ produce just this
behavior, ξ ≈ 0.01, when the relevant scale factor µ is required to equal the bound state, nucleon mass.

For quark binding into a nucleon, the same V (rij) is the potential acting between any two quarks
whose instantaneous transverse separation is b⃗i − b⃗j , and whose 3-dimensional separation is rij = |r⃗i − r⃗j |.
In the following, and based on the pion analysis, the flux tube or Gluon Bundle coordinates which interact
between any two quarks are assigned the order-of-magnitude value rij = (mπ)−1 , while the mass scale
µ is chosen to be that of the nucleon. The corresponding ξ value will then decrease, and this has an
interesting effect when fitting p − p elastic scattering data, which depends upon the Fourier transform
of φ(b), becoming for small ξ very close to the Gaussian exp(−q⃗2/4m2

p), where mp is the proton mass,
which is the form of momentum space fall-off suggested in recent light-front holographic analyses [7].
A prior calculation, in the context of the work of Ref. [7], also required the maximum, effective quark
transverse fluctuations to be less than 10−13cm [8].

The formalism of Refs. [1]-[6] provides a simple way to insure that bound quark fluctuations are
always less than the Compton wavelength of the bound state particle, by arguing that the confinement
mass scale for each bound state should be understood to be the mass of that bound state. This perhaps
novel idea can easily be employed with the restriction that the small ξ-parameter can be decreased for
larger values of the bound state mass, until a point is reached where it is so small as to be negligible.
For example, in the construction of a model deuteron of Ref. [3], ξ was quite irrelevant to the 2.2MeV
bound state of the deuteron, and was simply neglected. Better approximations to high energy pp elastic
scattering, now underway, can easily retain all ξ-dependence associated with the proton mass of the
scattering bound states; but again, that dependence associated with the numerical value of ξ is expected
to be insignificant.

2 Formulation

In our formulation in Ref. [2], the confinement mass parameter µ first appears in the transverse-fluctuation
probability function φ(b), so that b values larger than 1/µ give a negligible contribution to any Fourier
transform of powers of φ(b). The procedure adopted here, in contrast to that of Ref. [2], is to define a
simpler, approximate equation for the bound-state-energy, or the mass mBS of the hadron so defined,
but whose Order-of-Magnitude (OoM) solutions easily display a decreasing OoM of the parameter ξ
with increasing mBS . This new, approximate relation is obtained in three steps: i) Neglect all kinetic
energy contributions of the q’s and/or q̄’s, since in such small confined spaces all such kinetic energy
contributions must be non-relativistic; ii) underestimate the contributions of each q/q̄ V (rij) interaction
by replacing its rij by 1/mπ , since that replacement is the essence of the OoM of the pion calculation;
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iii) and replace µ by the mBS :

E0 → mBS ≈ nqmq + ξ
∑

q

mBS

(
mBS

mπ

)1+ξ

, (1)

where
∑

q represents the number of pairwise q and/or q̄ interactions. One them obtains

mBS ≈ nqmq + nq(nq − 1)
2

mBS ξ

(
mBS

mπ

)1+ξ

(2)

and since ξ is expected to be ≪ 1, (2) simplifies further to

ξ ≈ [1 − nqmq

mBS
] ·
(

1
nq(nq−1)

2
mBS

mπ

)
(3)

Note that, if the mBS of (3) is itself chosen to be mπ , the value of ξ will turn out to be an OoM
larger than that of Ref. [2], ξ ≈ 1.0, instead of 0.1. But for larger values of mBS , where the ratio
(mBS/mπ) of (3) makes a difference, the ξ-values found are reasonable. For example, for a proton, (3)
yields 0.05, suggesting that the result of using ξ = 0 when incorporating Fourier transforms into data-
fitting prescriptions would be barely distinguishable from using a more correct value of ξ.

For 4-quark [9] and higher bound states, their value of ξ would be even smaller, using proper masses
for the c, u, and d quarks. There then would be little difference between the Fourier transform of φ(b)
and a pure Gaussian, but a Gaussian which involves the mass of that bound state. Table I displays the
expected variations of ξ with respect to x, where x = mBS/mπ, using correct quark flavor masses for
known hadrons.

Table 1. ξ-values for the known hadrons, using correct quark flavor masses [10], displays the expected variations
in ξ as a function of x where x = mBS/mπ

Hadron mBS [GeV/c2] Quark Content x ξ

Proton 0.938 uud 6.7 0.05
Neutron 0.939 udd 6.7 0.05
Lambda,Λ0 1.116 uds 8.0 0.04
Charmed Lambda, Λ+

c 2.286 udc 16.3 0.009
Bottom Lambda, Λ0

b 5.619 udb 40.1 0.008
Sigma+,

∑+ 1.189 uus 8.5 0.03
Sigma0,

∑0 1.193 uds 8.5 0.03
Sigma-,

∑− 1.197 dds 8.6 0.03
Charmed Sigma,

∑++
c

2.454 uuc 17.5 0.009
Bottom Sigma+ ,

∑+
b

5.811 uub 41.5 0.008
Bottom Sigma- ,

∑−
b

5.816 ddb 41.5 0.008
Xi0,Ξ0 1.315 uss 9.4 0.03
Xi-,Ξ− 1.322 dss 9.4 0.03
Charmed Xi+,Ξ+

c 2.468 usc 17.6 0.008
Charmed Xi0, Ξ0

c 2.471 dsc 17.6 0.008
Charmed Xi prime+,Ξ

′+
c 2.575 usc 18.4 0.008

Charmed Xi prime0,Ξ
′0
c 2.578 dsc 18.4 0.008

double Charmed Xi,Ξ+
cc 3.519 dcc 25.1 0.004

Bottom Xi (Cascade B),Ξ0
b 5.788 usb 41.3 0.008

Bottom Xi-(Cascade B),Ξ−
b 5.791 dsb 41.4 0.008

Charmed Omega,Ω0
c 2.695 ssc 19.3 0.008

Bottom Omega-, Ω−
b 6.071 ssb 43.4 0.007
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3 Summary

In summary, the proposal made in the above paragraphs, in the context of explicit quark transverse
fluctuations, allows one to be certain that such fluctuations will not exceed the Compton wavelength
of the bound state formed from such quarks and/or antiquarks. This is surely a physical requirement;
and it can be seen, at least qualitatively, on the basis of the non-perturbative, gauge-invariant, func-
tional formulation of Ref. [2], that, for a confining theory with chiral symmetry breaking, the interquark
separation b necessarily fluctuates and that φ(b) accounts for this in a gauge invariant way.
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