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Abstract In this paper, for N ≥ 2, we give a natural derivation of the Avron-Herbst type formula
for the time evolution generated by an N -body Hamiltonian with constant electric and magnetic
fields. By virtue of the formula, some scattering problems can be reduced to those in the case where
the constant electric and magnetic fields are parallel to each other. As an application of the formula,
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particle and some neutral ones in crossed constant electric and magnetic fields.
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1 Introduction

In this paper, we study the scattering theory for N -body quantum systems in constant electric and
magnetic fields.

Let N ≥ 2. Consider the system of N particles moving in the Euclidean space R3 on which the constant
electric field E = (E1, E2, E3) ∈ R3 \ {0} and the constant magnetic field B = (0, 0, B) ∈ R3 \ {0} with
B > 0 are impressed. Denote by mj > 0, qj ∈ R and xj = (xj,1, xj,2, xj,3) ∈ R3 (j = 1, . . . , N) the mass,
the charge, and the position of the j-th particle, respectively. We assume that for some Nc ∈N such that
Nc ≤ N , the last Nc particles are charged and the rest are neutral. In other words, we suppose

qj 6= 0 (if j ≥ Nn + 1), qj = 0 (otherwise), (1)

where Nn := N −Nc ≥ 0. Then the total Hamiltonian H̃(E) of the system is defined by

H̃(E) = H̃0(E) + V,

H̃0(E) =
N∑
j=1

(
1

2mj
(pj − qjA(xj))2 − qjE · xj

)
,

V =
∑

1≤j<k≤N
Vjk(xj − xk),

(2)

on L2(R3×N ), where pj = −i∇xj
= (pj,1, pj,2, pj,3) is the canonical momentum of the j-th particle,

Vjk(xj − xk)’s are pair potentials, and A(r) is the vector potential associated with the magnetic field B.
In the symmetric gauge, A(r) is written as

A(r) = 1
2B × r = B

2 (−r2, r1, 0), r = (r1, r2, r3) ∈ R3.

We will use the symmetric gauge in this paper. Put

Dj := pj − qjA(xj)
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for the sake of brevity. Dj is called the kinetic momentum of the j-th particle. Here we note that if
j ≤ Nn, then pj = Dj because of qj = 0. For the sake of simplicity, we impose the following condition
(V 0)d with d = 3 on V at first:

(V 0)d For 1 ≤ j < k ≤ N , Vjk belongs to C(Rd; R), and satisfies the decaying condition

|Vjk(r)| ≤ C〈r〉−ρ

with some ρ > 0.

Here 〈r〉 =
√

1 + r2. Under the condition (V 0)3, H̃(E) is self-adjoint.
Put E⊥ := (E1, E2, 0) ⊥ B and E‖ := (0, 0, E3) ‖ B. Then E can be decomposed into the direct

sum E⊥ ⊕E‖. Now we would like to give the relation between e−itH̃(E) and e−itH̃(E‖) in terms of the
Avron-Herbst type formula. Let us introduce the total mass M , the total charge Q, the position of the
center of mass xcm, the total pseudomomentum ktotal of the system, and the E ×B drift velocity α by

M =
N∑
j=1

mj , Q =
N∑
j=1

qj , xcm = 1
M

N∑
j=1

mjxj ,

ktotal =
N∑
j=1

(pj + qjA(xj)), α = E ×B

B2 =
(
E2

B
,−E1

B
, 0
)
.

Put
kj := pj + qjA(xj)

for the sake of brevity. kj is called the pseudomomentum of the j-th particle. Here we note that if j ≤ Nn,
then pj = kj because of qj = 0, and that

ktotal =
N∑
j=1

kj

holds. Then we obtain the following Avron-Herbst type formula for e−itH̃(E):

Theorem 1 Assume V satisfies (V 0)3. Then the Avron-Herbst type formula for e−itH̃(E)

e−itH̃(E) = T̃ (t)e−itH̃(E‖)T̃ (0)∗,

T̃ (t) = e−itMα2/2eiMα·xcme−itα·ktotal
(3)

holds.

We note T̃ (0) = eiMα·xcm . e−itα·ktotal in the definition of T̃ (t) is called a magnetic translation
generated by ktotal. It is well-known that e−itα·ktotal can be written as

e−itα·ktotal = e−itα·A(x̃cc)e−itα·ptotal (4)

(see e.g. [1]), where x̃cc and the total canonical momentum ptotal are given by

x̃cc =
N∑
j=1

qjxj , ptotal =
N∑
j=1

pj .

If Q 6= 0, then the position of the center of charge xcc can be given by

xcc = 1
Q
x̃cc,

and (4) can be written as
e−itα·ktotal = e−itα·QA(xcc)e−itα·ptotal . (5)
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Hence e−itα·ktotal should be called a magnetic translation of the center of charge.
The Avron-Herbst type formula for e−itH̃(E) like (3) was already obtained by Skibsted [2]. In fact, he

introduced

U1(t) =
N∏
j=1

Gj(t), Gj(t) = eitmjα
2/2e−itα·pjei(tqjA(α)+mjα)·xj , (6)

where Gj(t) is the Galilei transform associated with the j-th particle which reflects the effect of the
constant magnetic field B. One of the basic properties of Gj(t) is that

Gj(t)∗xjGj(t) = xj + tα, Gj(t)∗DjGj(t) = Dj +mjα

hold. Then he claimed that the Avron-Herbst type formula

e−itH̃(E) = U1(t)e−itH̃(E‖)U1(0)∗ (7)

holds. Since charged particles drift with the E ×B drift velocity α, it is natural to consider the Galilei
transform Gj(t) for each charged particle. However, it is not certain whether the Galilei transforms Gj(t)’s
must be introduced also for neutral particles. Notice that neutral particles can move freely independent
of the drift velocity α. One of the purposes of this paper is to give a natural definition of an equivalent of
U1(t) even if the system under consideration has some neutral particles, that is, Nn ≥ 1.

Also in the case where the space dimension d is not three but two, the Avron-Herbst type formula can
be obtained quite similarly: We suppose that the constant magnetic field B is perpendicular to the plane
R2, and that the constant electric field E = (E1, E2) ∈ R2 \ {0} lies in the plane. We use the notation

xj,⊥ = (xj,1, xj,2), pj,⊥ = (pj,1, pj,2), A(xj,⊥) = B

2 (−xj,2, xj,1),

Dj,⊥ = pj,⊥ − qjA(xj,⊥), kj,⊥ = pj,⊥ + qjA(xj,⊥),

xcm,⊥ = 1
M

N∑
j=1

mjxj,⊥, x̃cc,⊥ =
N∑
j=1

qjxj,⊥, ptotal,⊥ =
N∑
j=1

pj,⊥,

Dtotal,⊥ =
N∑
j=1

Dj,⊥ = ptotal,⊥ −A(x̃cc,⊥),

ktotal,⊥ =
N∑
j=1

kj,⊥ = ptotal,⊥ +A(x̃cc,⊥).

Then the total Hamiltonian H̃⊥(E) of the system is defined by

H̃⊥(E) = H̃0,⊥(E) + V,

H̃0,⊥(E) =
N∑
j=1

(
1

2mj
D2
j,⊥ − qjE · xj,⊥

)
,

V =
∑

1≤j<k≤N
Vjk(xj,⊥ − xk,⊥).

(8)

on L2(R2×N ). Under the condition (V 0)2, H̃⊥(E) is self-adjoint. Then we obtain the following Avron-
Herbst type formula for e−itH̃⊥(E):

Theorem 2 Assume V satisfies (V 0)2. Then the Avron-Herbst type formula for e−itH̃⊥(E)

e−itH̃⊥(E) = T̃⊥(t)e−itH̃⊥(0)T̃⊥(0)∗,

T̃⊥(t) = e−itMα2
⊥/2eiMα⊥·xcm,⊥e−itα⊥·ktotal,⊥

(9)

holds.
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Since α = (α⊥, 0), T̃ (t) in Theorem 1 can be represented as

T̃ (t) = T̃⊥(t)⊗ Id (10)

on L2(R3×N ) ∼= L2(R2×N )⊗ L2(RN ). Hence we have only to show Theorem 2 essentially. We will give
the proof in §2.

When N = 1, the Avron-Herbst type formula for the free propagator was already obtained by Adachi-
Kawamoto [3], even if the homogeneous electric field is strictly time-dependent. Here we note that before
the work [3], a different but meaningful factorization of the free propagator was given by Chee [4]. In
the case where the homogeneous electric field is constant, as for some spectral problems for perturbed
Hamiltonians, see Wang [5], Dimassi-Petkov [6], [7], [8], Ferrari-Kovařík [9], [10], and Kawamoto [11]; while
in the homogeneous electric field is time-dependent, Lawson and Avossevou [12] have recently studied
a certain spectral problem for the free Hamiltonian with time-dependent mass (see also the references
therein).

On the other hand, when N ≥ 2, in general, it seems hard to obtain a certain effective Avron-Herbst
type formula if the homogeneous electric field is time-dependent, except in the case where all the specific
charges of particles are the same, that is, xcm = xcc. We will mention it in §4.

The structure of this paper is as follows: In §2, we will give the proof of Theorem 2. In §3, as an
application of our results, we will deal with the problem of the asymptotic completeness for the systems
which have the only charged particle and some neutral ones in crossed constant electric and magnetic
fields, mainly in the short-range case. In §4, we will make some remarks on the extension to the case
where the homogeneous electric field is strictly time-dependent.

2 Proof of Theorem 2

In this section, we will show Theorems 1 and 2. As mentioned in §1, we have only to give the proof of
Theorem 2.

First of all, we note that

ktotal,⊥ −Dtotal,⊥ = 2
N∑
j=1

qjA(xj,⊥) = 2A(x̃cc,⊥),

A(A(r⊥)) = −
(
B

2

)2
r⊥, r̂⊥ ·A(r⊥) = −A(r̂⊥) · r⊥

hold for r⊥, r̂⊥ ∈ R2. Then H̃0,⊥(E) can be represented as

H̃0,⊥(E) =
N∑
j=1

1
2mj

D2
j,⊥ − E · x̃cc,⊥

=
N∑
j=1

1
2mj

D2
j,⊥ + 2

B2E ·A(ktotal,⊥ −Dtotal,⊥)

=
N∑
j=1

1
2mj

D2
j,⊥ −

2
B
A

(
E

B

)
· (ktotal,⊥ −Dtotal,⊥).

Noticing

α⊥ = − 2
B
A

(
E

B

)
,

we have

H̃0,⊥(E) =
N∑
j=1

1
2mj

D2
j,⊥ + α⊥ · (ktotal,⊥ −Dtotal,⊥)
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=
N∑
j=1

1
2mj

(Dj,⊥ −mjα⊥)2 + α⊥ · ktotal,⊥ −
M

2 α2
⊥.

Putting

T̃⊥ :=
N∑
j=1

1
2mj

(Dj,⊥ −mjα⊥)2 + V,

we see that T̃⊥ does commute with α⊥ · ktotal,⊥, and that

T̃⊥ = eiMα⊥·xcm,⊥H̃⊥(0)e−iMα⊥·xcm,⊥

holds. Hence we have

e−itH̃⊥(E) = eiMtα2
⊥/2e−itα⊥·ktotal,⊥e−itT̃⊥

= eiMtα2
⊥/2e−itα⊥·ktotal,⊥eiMα⊥·xcm,⊥e−itH̃⊥(0)e−iMα⊥·xcm,⊥

= e−itMα2
⊥/2eiMα⊥·xcm,⊥e−itα⊥·ktotal,⊥e−itH̃⊥(0)e−iMα⊥·xcm,⊥ ,

which yields (9). Thus the proof is completed.

3 Application

In this section, we will apply the Avron-Herbst type formula to some scattering problems for N -body
quantum systems in constant electric and magnetic fields, which have neutral particles. In order to make
the point at issue clear, we suppose that the space dimension d is two. The case where d = 3 and E‖ = 0
can be also dealt with quite similarly. The case where d = 3 and E‖ 6= 0 can be treated by the results
due to Skibsted [2]. We impose the following condition (V 1)2,SR on V , which is stronger than (V 0)2:

(V 1)2,SR For 1 ≤ j < k ≤ N , Vjk belongs to C2(R2; R), and satisfies the decaying condition

|∂βr Vjk(r)| ≤ Cβ〈r〉−ρ−|β|, |β| ≤ 2

with some ρ > 1.

We consider the problem of the asymptotic completeness for an N -body quantum system in the plane
R2 to which constant electric and magnetic fields are impressed. Suppose Nc = 1 and Nn = N − 1 ≥ 1.
Then the total Hamiltonian H̃⊥(E) on L2(R2×N ) is represented as

H̃⊥(E) = H̃0,⊥(E) + V,

H̃0,⊥(E) =
N−1∑
j=1

1
2mj

p2
j,⊥ +

(
1

2mN
D2
N,⊥ − qNE · xN,⊥

) (11)

with qN 6= 0. H̃⊥(E) has a pure absolutely continuous spectrum, that is,

L2
ac(H̃⊥(E)) = L2(R2×N ) (12)

where L2
ac(H̃⊥(E)) is the absolutely continuous spectral subspace associated with H̃⊥(E). In fact, putting

Ã = qNE · ktotal,⊥ as in Adachi-Kawamoto [3],

i[H̃⊥(E), Ã] = q2
NE

2 > 0 (13)

holds even if V 6= 0, which implies the above property.
When E = 0, the results of the asymptotic completeness for

H̃⊥(0) =
N−1∑
j=1

1
2mj

p2
j,⊥ + 1

2mN
D2
N,⊥ + V (14)
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were already obtained by Adachi [13] and [14]. We will show the asymptotic completeness for H̃⊥(E)
by using those. For the sake of explanation, we introduce some notation in the many body scattering
theory: A non-empty subset of the set {1, . . . , N} is called a cluster. Let Cj , 1 ≤ j ≤ m, be clusters. If
∪1≤j≤mCj = {1, . . . , N} and Cj ∩ Ck = ∅ for 1 ≤ j < k ≤ m, then a = {C1, . . . , Cm} is called a cluster
decomposition. #(a) denotes the number of clusters in a. Let A be the set of all cluster decompositions.
Suppose a, b ∈ A . If b is obtained as a refinement of a, that is, if each cluster in b is a subset of a cluster
in a, we say b ⊂ a, and its negation is denoted by b 6⊂ a. Any a is regarded as a refinement of itself.
The one- and N -cluster decompositions are denoted by amax and amin, respectively. The pair (j, k) is
identified with the (N − 1)-cluster decomposition {(j, k), (1), . . . , (ĵ), . . . , (k̂), . . . , (N)}. For a ∈ A , the
cluster Hamiltonian H̃a,⊥(E) and the intercluster potential Ia are defined by

H̃a,⊥(E) = H̃0,⊥(E) + V a, V a =
∑

(j,k)⊂a

Vjk(xj,⊥ − xk,⊥),

Ia = V − V a =
∑

(j,k)6⊂a

Vjk(xj,⊥ − xk,⊥).
(15)

Here we note
H̃amax,⊥(E) = H̃⊥(E), H̃amin,⊥(E) = H̃0,⊥(E).

Of course, H̃a,⊥(0) can be defined similarly. Let a =
{
C1, . . . , C#(a)

}
∈ A . For the sake of simplicity, we

suppose N ∈ C#(a). For each cluster Cl in a, the innercluster Hamiltonian H̃Cl

⊥ (0) is defined by

H̃Cl

⊥ (0) =
∑
j∈Cl

1
2mj

D2
j,⊥ + V Cl , V Cl =

∑
{j,k}⊂Cl

Vjk(xj,⊥ − xk,⊥), (16)

on L2(R2×#(Cl)), where #(Cl) denotes the number of elements in Cl. In particular, when l = #(a),
H̃
C#(a)
⊥ (0) is represented as

H̃
C#(a)
⊥ (0) =

∑
j∈C#(a)
j<N

1
2mj

p2
j,⊥ + 1

2mN
D2
N,⊥ + V C#(a) .

If N = #(C#(a)), that is, a = amax, then H̃
C#(a)
⊥ (0) is just equal to H̃⊥(0). On the other hand, when

l < #(a),
H̃Cl

⊥ (0) =
∑
j∈Cl

1
2mj

p2
j,⊥ + V Cl

is just a #(Cl)-body Schrödinger operator without external electromagnetic fields. Here we would like
to consider the sum of all the innercluster Hamiltonians except H̃C#(a)

⊥ (0) in the center-of-mass frame:
Firstly, we will equip R2×#(Cl), l = 1, . . . ,#(a)− 1, with the metric

〈η, η̃〉 =
#(Cl)∑
k=1

mcl(k)xcl(k),⊥ · x̃cl(k),⊥

for η = (xcl(1),⊥, . . . , xcl(#(Cl)),⊥), η̃ = (x̃cl(1),⊥, . . . , x̃cl(#(Cl)),⊥) ∈ R2×#(Cl), and define two subspaces
XCl

⊥ and XCl,⊥ of R2×#(Cl) by

XCl

⊥ =
{

(xcl(1),⊥, . . . , xcl(#(Cl)),⊥) ∈ R2×#(Cl)

∣∣∣∣∣
#(Cl)∑
k=1

mcl(k)xcl(k),⊥ = 0
}
,

XCl,⊥ = R2×#(Cl) 	XCl

⊥ .

Secondly, we will define two subspaces Xa,n
⊥ and Xa,n,⊥ of R2×(N−#(C#(a))) by

Xa,n
⊥ = XC1

⊥ × · · · ×X
C#(a)−1
⊥ , Xa,n,⊥ = R2×(N−#(C#(a))) 	Xa,n

⊥ ,
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which are equipped with the metric 〈 , 〉. Then the sum of all the innercluster Hamiltonians except
H̃
C#(a)
⊥ (0) can be decomposed into

H̃a,n
⊥ ⊗ Id + Id⊗

(
−1

2∆Xa,n,⊥

)
, H̃a,n

⊥ = −1
2∆Xa,n

⊥
+ (V a − V C#(a)), (17)

on L2(R2×(N−#(C#(a)))) ∼= L2(Xa,n
⊥ )⊗ L2(Xa,n,⊥), where ∆Xa,n

⊥
and ∆Xa,n,⊥ are the Laplace-Beltrami

operators on Xa,n
⊥ and Xa,n,⊥, respectively. H̃a,n

⊥ is an (N−#(C#(a)))-body Schrödinger operator without
external electromagnetic fields in the center-of-mass frame. Thus we have

H̃a,⊥(0) = H̃a,n
⊥ ⊗ Id⊗ Id + Id⊗H̃C#(a)

⊥ (0)⊗ Id + Id⊗ Id⊗
(
−1

2∆Xa,n,⊥

)
(18)

on L2(R2×N ) ∼= L2(Xa,n
⊥ )⊗ L2(R2×#(C#(a)))⊗ L2(Xa,n,⊥). We put

Πa(0) := Ppp(H̃a,n
⊥ )⊗ Ppp(H̃C#(a)

⊥ (0))⊗ Id (19)

on L2(R2×N ) ∼= L2(Xa,n
⊥ )⊗L2(R2×#(C#(a)))⊗L2(Xa,n,⊥), where Ppp(H̃a,n

⊥ ) and Ppp(H̃C#(a)
⊥ (0)) are the

eigenprojections for H̃a,n
⊥ and H̃C#(a)

⊥ (0), respectively. If a = amax, then Πamax(0) = Ppp(H̃⊥(0)) holds;
while, if a = amin, then Πamin(0) = Id holds. Here we introduce the wave operators

W±a (E) = s-lim
t→±∞

eitH̃⊥(E)e−itH̃a,⊥(E)Πa(E),

Πa(E) = T̃⊥(0)Πa(0)T̃⊥(0)∗ = eiMα⊥·xcm,⊥Πa(0)e−iMα⊥·xcm,⊥ ,
(20)

for a ∈ A . W±amax
(E) is identified with Πamax(E). Then one can obtain the following result of the

asymptotic completeness for H̃⊥(E):

Theorem 3 Assume V satisfies (V 1)2,SR. Then the wave operators W±a (E), a ∈ A , all exist, and are
asymptotically complete:

L2(R2×N ) =
∑
a∈A

⊕RanW±a (E). (21)

This theorem with N = 2 was already obtained by Kiyose [15]. The asymptotic completeness (21) is
equivalent to that the time evolution e−itH̃⊥(E)ψ of any scattering state ψ ∈ L2

ac(H̃⊥(E)) = L2(R2×N ) is
asymptotically represented as

e−itH̃⊥(E)ψ =
∑
a∈A

e−itH̃a,⊥(E)Πa(E)ψ±a + o(1) as t→ ±∞ (22)

with some ψ±a ∈ L2(R2×N ). In particular, e−itH̃amax,⊥(E)Πamax(E)ψ±amax
implies that all the particles in

the system move with the velocity α⊥ in forming a certain bound state. In fact, the guiding center of the
N -th particle, which is the only charged one, drifts with the velocity α⊥. This result can be obtained
immediately by using Theorem 2 and the following result due to Adachi [13] and [14]:

Theorem 4 Assume V satisfies (V 1)2,SR. Then the wave operators

W±a (0) = s-lim
t→±∞

eitH̃⊥(0)e−itH̃a,⊥(0)Πa(0), a ∈ A , (23)

all exist, and are asymptotically complete:

L2(R2×N ) =
∑
a∈A

⊕RanW±a (0). (24)
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In fact, Theorem 2 yields

W±a (E) = T̃⊥(0)W±a (0)T̃⊥(0)∗ = eiMα⊥·xcm,⊥W±a (0)e−iMα⊥·xcm,⊥ (25)

for a ∈ A . Hence, Theorem 3 can be obtained by virtue of Theorem 4.
In the case where N = 2, one can also obtain the result of the asymptotic completeness for H̃⊥(E)

with some long-range potential V = V12 by virtue of the result of [13]:

Theorem 5 Suppose N = 2. Assume V = V12 = Iamin belongs to C∞(R2; R), and satisfies the decaying
condition

|∂βr V (r)| ≤ Cβ〈r〉−ρ−|β| (26)
with some 1/2 < ρ ≤ 1. Then the modified wave operators

W±amin,D
(E) = s-lim

t→±∞
eitH̃⊥(E)e−itH̃amin,⊥(E)e

−i
∫ t

0
V (sp1,⊥/m1−sα⊥) ds

, (27)

exist, and are asymptotically complete:

L2(R2×2) = RanW±amin,D
(E)⊕ RanΠamax(E). (28)

By virtue of the result of [13], the modified wave operators

W±amin,D
(0) = s-lim

t→±∞
eitH̃⊥(0)e−itH̃amin,⊥(0)e

−i
∫ t

0
V (sp1,⊥/m1) ds

, (29)

exist, and are asymptotically complete:

L2(R2×2) = RanW±amin,D
(0)⊕ RanΠamax(0). (30)

Since Theorem 2 yields

W±amin,D
(E) = T̃⊥(0)W±amin,D

(0)T̃⊥(0)∗ = eiMα⊥·xcm,⊥W±amin,D
(0)e−iMα⊥·xcm,⊥ , (31)

Theorem 5 can be shown in the same way as above (see also Kiyose [15]). The Dollard type modifier
e
−i
∫ t

0
V (sp1,⊥/m1−sα⊥) ds in the definition of W±amin,D

(E) seems quite natural, by taking account of that
the guiding center of the second particle, which is the only charged one, drifts with the velocity α⊥.
Here we note that when N = 1, the corresponding long-range scattering problem has not been solved
yet, as far as we know (see Adachi-Kawamoto [3]). Unlike in the case where N ≥ 2, in general, V does
not commute with the conjugate operator Ã = q1E · p1,⊥ (cf. (13)). For reference, the problem of the
asymptotic completeness for H̃⊥(0) with N ≥ 3 and long-range interactions has not been solved yet, as
far as we know. But, maybe one can show the asymptotic completeness under the additional assumption
on smooth Vjk’s

|∂βr Vjk(r)| ≤ Cβ〈r〉−ρ−|β| (32)
with some

√
3− 1 < ρ ≤ 1, by using the arguments of Dereziński [16] and Gérard-Łaba [17].

√
3− 1 is

called the so-called Enss number. Hence we may expect that a natural extension of Theorem 5 to the
case where N ≥ 3 is obtained.

4 Concluding Remarks

We have considered the case where the homogeneous electric field is independent of t only. Here we will
make some remarks on the case where the electric field is strictly dependent on t.

In order to make the point at issue clear, we suppose that the space dimension d is two, that the
time-dependent electric field E(t) = (E1(t), E2(t)) ∈ C(R; R2) lies in the plane R2, and that the system
under consideration has at least one charged particle. Then the free Hamiltonian H̃0,⊥(E(t)) of the system
is defined by

H̃0,⊥(E(t)) =
N∑
j=1

(
1

2mj
D2
j,⊥ − qjE(t) · xj,⊥

)
(33)
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on L2(R2×N ). We denote by Ũ0,⊥(t, s) the propagator generated by H̃0,⊥(E(t)). By using the results of
Adachi-Kawamoto [3], one can obtain the following Avron-Herbst type formula for Ũ0,⊥(t, 0) immediately:

Ũ0,⊥(t, 0) = T̃1,⊥(t)e−itH̃0,⊥(0)T̃1,⊥(0)∗ (34)

with

T̃1,⊥(t) =
N∏
j=1

Tj,⊥(t), Tj,⊥(t) = e−imjaj,⊥(t)eimjbj,⊥(t)·xj,⊥e−icj,⊥(t)·kj,⊥ ,

bj,⊥(t)T = ωj
B

∫ t

0
R̂(−ωj(t− s))E(s)T ds, cj,⊥(t) =

∫ t

0
bj,⊥(s) ds,

aj,⊥(t) =
∫ t

0

{
1
2bj,⊥(s)2 + ωj

B
bj,⊥(s) ·A(cj,⊥(s))

}
ds,

ωj = qjB

mj
, R̂(ϕ) =

(
cosϕ − sinϕ
sinϕ cosϕ

)
.

(35)

|ωj | is called the Larmor frequency of the j-th particle. ωj/B is equal to the specific charge qj/mj . The
Avron-Herbst type formula (34) with N = 1 was already obtained in [3]. The differential equations for
aj,⊥(t), bj,⊥(t) and cj,⊥(t) are given as

ḃj,⊥(t) + 2ωj
B
A(bj,⊥(t)) = ωj

B
E(t), bj,⊥(0) = 0,

ċj,⊥(t) = bj,⊥(t), cj,⊥(0) = 0,

ȧj,⊥(t) = 1
2bj,⊥(t)2 + ωj

B
bj,⊥(t) ·A(cj,⊥(t)), aj,⊥(0) = 0

(36)

(see [3]). Now we introduce the total Hamiltonian H̃⊥(E(t)) of the system is defined by

H̃⊥(E(t)) = H̃0,⊥(E(t)) + V, V =
∑

1≤j<k≤N
Vjk(xj,⊥ − xk,⊥) (37)

on L2(R2×N ), and denote by Ũ⊥(t, s) the propagator generated by H̃⊥(E(t)). Then the following Avron-
Herbst type formula for Ũ⊥(t, 0) can be obtained by virtue of (34):

Theorem 6 Denote by Ū⊥(t, s) the propagator generated by the time-dependent Hamiltonian

H̄⊥(t) = H̃0,⊥(0) + V (t),

V (t) =
∑

1≤j<k≤N
Vjk((xj,⊥ + cj,⊥(t))− (xk,⊥ + ck,⊥(t))) (38)

on L2(R2×N ). Suppose that both Ũ⊥(t, s) and Ū⊥(t, s) exist uniquely. Then the Avron-Herbst type formula

Ũ⊥(t, 0) = T̃1,⊥(t)Ū⊥(t, 0)T̃1,⊥(0)∗ (39)

holds.

We note T̃1,⊥(0) = Id, because Tj,⊥(0) = Id for any j. By definition, if the specific charges qj/mj

and qk/mk are different from each other, then bj,⊥(t) 6= bk,⊥(t) and cj,⊥(t) 6= ck,⊥(t) in general, because
ωj 6= ωk. Hence V (t) is time-dependent generally. Because of this, it seems hard to get useful propagation
properties of Ū⊥(t, 0). To overcome this difficulty is an issue in the future. However, if all the specific
charges are the same, then b1,⊥(t) = · · · = bN,⊥(t) and c1,⊥(t) = · · · = cN,⊥(t) hold. Then V (t) is
time-independent. Hence we have the following corollary:

New Horizons in Mathematical Physics, Vol. 3, No. 1, March 2019 9

Copyright © 2019 Isaac Scientific Publishing March



Corollary 7 Suppose that all the specific charges of the system are the same. Then the Avron-Herbst
type formula

Ũ⊥(t, 0) = T̃1,⊥(t)e−itH̃⊥(0)T̃1,⊥(0)∗,
T̃1,⊥(t) = e−iMatotal,⊥(t)eiMbtotal,⊥(t)·xcm,⊥e−ictotal,⊥(t)·ktotal,⊥

(40)

holds with

btotal,⊥(t)T = Ω

B

∫ t

0
R̂(−Ω(t− s))E(s)T ds,

ctotal,⊥(t) =
∫ t

0
btotal,⊥(s) ds,

atotal,⊥(t) =
∫ t

0

{
1
2btotal,⊥(s)2 + Ω

B
btotal,⊥(s) ·A(ctotal,⊥(s))

}
ds,

Ω = QB

M
= ω1 = · · · = ωN .

(41)

In this case, the unique existence of Ũ⊥(t, s) can be guaranteed by the self-adjointness of H̃⊥(0), in
virtue of (40). (40) can be also obtained directly as in [3]. We will give an outline of the proof. Put

Û⊥(t) := e−iMatotal,⊥(t)eiMbtotal,⊥(t)·xcm,⊥e−ictotal,⊥(t)·ktotal,⊥e−itH̃⊥(0). (42)

By differentiating (42) in t formally, one can obtain

i
˙̂
U⊥(t) = e−iMatotal,⊥(t)eiMbtotal,⊥(t)·xcm,⊥e−ictotal,⊥(t)·ktotal,⊥H̃⊥(0)e−itH̃⊥(0)

+ e−iMatotal,⊥(t)eiMbtotal,⊥(t)·xcm,⊥e−ictotal,⊥(t)·QA(xcc,⊥)

× (ċtotal,⊥(t) · ptotal,⊥)e−ictotal,⊥(t)·ptotal,⊥e−itH̃⊥(0)

+ (Mȧtotal,⊥(t)−Mḃtotal,⊥(t) · xcm,⊥ + ċtotal,⊥(t) ·QA(xcc,⊥))Û⊥(t).

Here we used
e−ictotal,⊥(t)·ktotal,⊥ = e−ictotal,⊥(t)·QA(xcc,⊥)e−ictotal,⊥(t)·ptotal,⊥ .

Since H̃⊥(0) commutes with e−ictotal,⊥(t)·ktotal,⊥ ,

e−ictotal,⊥(t)·QA(xcc,⊥)ptotal,⊥e
ictotal,⊥(t)·QA(xcc,⊥) = ptotal,⊥ −QA(ctotal,⊥(t)),

we have
i

˙̂
U⊥(t) = Ĥ⊥(t)Û⊥(t)

with

Ĥ⊥(t) =
N∑
j=1

1
2mj

(pj,⊥ −mjbtotal,⊥(t)− qjA(xj,⊥))2 + V

+ ċtotal,⊥(t) · (ptotal,⊥ −Mbtotal,⊥(t)−QA(ctotal,⊥(t)))
+Mȧtotal,⊥(t)−Mḃtotal,⊥(t) · xcm,⊥ + ċtotal,⊥(t) ·QA(xcc,⊥)

= H̃⊥(0) + (−btotal,⊥(t) + ċtotal,⊥(t)) · (ptotal,⊥ −QA(xcc,⊥))
+ 2ċtotal,⊥(t) ·QA(xcc,⊥)−Mḃtotal,⊥(t) · xcm,⊥

+Mȧtotal,⊥(t)− ċtotal,⊥(t) · (Mbtotal,⊥(t) +QA(ctotal,⊥(t)))

+ M

2 btotal,⊥(t)2.

If we take ctotal,⊥(t) as
ċtotal,⊥(t) = btotal,⊥(t), ctotal,⊥(0) = 0,
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then we have

Ĥ⊥(t) = H̃⊥(0)− 2QA(btotal,⊥(t)) · xcc,⊥ −Mḃtotal,⊥(t) · xcm,⊥

+Mȧtotal,⊥(t)− M

2 btotal,⊥(t)2 −Qbtotal,⊥(t) ·A(ctotal,⊥(t)).

Here we used btotal,⊥(t) ·A(xcc,⊥) = −A(btotal,⊥(t)) · xcc,⊥. Moreover, if we take atotal,⊥(t) as

ȧtotal,⊥(t) = 1
2btotal,⊥(t)2 + Q

M
btotal,⊥(t) ·A(ctotal,⊥(t)), atotal,⊥(0) = 0,

then we have
Ĥ⊥(t) = H̃⊥(0)− (2QA(btotal,⊥(t)) · xcc,⊥ +Mḃtotal,⊥(t) · xcm,⊥).

If N = 1, then xcc,⊥ = xcm,⊥ holds automatically (cf. [3]). On the other hand, if N ≥ 2, then xcc,⊥ 6= xcm,⊥
in general, except in the case where all the specific charges are the same. Since xcc,⊥ = xcm,⊥ by assumption,
if we take btotal,⊥(t) as

2QA(btotal,⊥(t)) +Mḃtotal,⊥(t) = QE(t), btotal,⊥(0) = 0,

then
Ĥ⊥(t) = H̃⊥(E(t))

holds. This yields Û⊥(t) = Ũ⊥(t, 0). btotal,⊥(t), ctotal,⊥(t) and atotal,⊥(t) are given by (41) as in [3].
Now, as E(t) under consideration, we take the rotating electric field

Eν,θ(t) = E0(cos(νt+ θ), sin(νt+ θ))

with E0 > 0, ν ∈ R and θ ∈ [0, 2π). Fix j ∈ {Nn + 1, . . . , N}, that is, j ∈ {1, . . . , N} such that qj 6= 0. If
ν = 0, that is, E(t) ≡ E0(cos θ, sin θ), then cj,⊥(t)− tα⊥ is bounded in t, where

α⊥ = E0

B
(sin θ,− cos θ)

is the drift velocity. If ν = −ωj , then cj,⊥(t)− (−tαj,⊥(t)) is bounded in t, where

αj,⊥(t) = E0

B
(sin(−ωjt+ θ),− cos(−ωjt+ θ))

is the instantaneous drift velocity. Here we note that

|α⊥| = |αj,⊥(t)| = E0

B
.

Hence, in both two cases, the growth order of |cj,⊥(t)| is O(|t|) as |t| → ∞. The case where ν = −ωj
is closely related to the so-called cyclotron resonance. On the other hand, if ν 6= 0 and ν 6= −ωj , then
cj,⊥(t) is bounded in t. These results are due to [3]. Here we suppose that N = 2, that the first particle is
charged, and that the specific charge of the second particle is different from that of the first one. Let
ν = −ω1. Then, by virtue of the above results, we see that the growth order of |c1,⊥(t)− c2,⊥(t)| is O(|t|)
as |t| → ∞, which implies the possibility of the existence of scattering states for the system. Roughly
speaking, by virtue of the effect of the cyclotron resonance, the separation of these two particles may occur.
In fact, Sato [18] showed the existence of (modified) wave operators under some appropriate assumption
on V12, because some useful propagation properties of the free propagator Ũ0,⊥(t, 0) can be obtained by
using (34) and the argument of [3]. On the other hand, the problem of the asymptotic completeness for
such a system has not been solved yet. To get some useful propagation properties of Ũ⊥(t, 0) is an issue
in the future.
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