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Abstract. Electric load forecasting is a process that has to be both fast and reliable. An accurate 
method of load forecasting plays the most crucial role in achieving the aforementioned properties and 
also is a valuable tool in overcoming a variety of economic and operational problems connected to 
electrical energy production and distribution. In this study real data is used and the performance of 
three different techniques for adaptive electric load forecasting is evaluated. The first method is a 
combination of the well-established multimodel partitioning filter (MMPF) implementing extended 
Kalman filters (EKF) with Support Vector Machines (SVM), the second is the adaptive MMPF 
Kalman filters (KF) model and the third one is an artificial three layer feed-forward neural network 
(ANN). The results indicate that all three methods are reliable, however the combination of MMPF 
and SVM provides a more accurate load forecasting and at the same time identifies successfully both 
normal periodic behavior and any unusual activity of the electric grid. 

Keywords: Adaptive multimodel partitioning filter (MMPF), Support vector machines (SVM), 
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1   Introduction 

Electrical energy is considered as one of the most important factors that are closely related to both 
economic and social development. Accurate and fast load forecasting is related to a number of 
operational functions, such as system safety, power system real-time control, economic planning, grid’s 
maintenance and also fuel planning. 

The problem of load forecasting has been studied extensively during recent decades. Some of the 
proposed techniques make use of time series analysis using ARMA [1-5] or ARIMA models [6-10]. Other 
algorithms achieve load forecasting by adopting evolutionary techniques such as ANN’s [11-12], SVM’s 
[13-14] either alone or combined with other methods for the same purpose [15-17].  

The purpose of this study is not to introduce one more load forecasting criterion, but it focuses on 
applying three different methods to real electric load data and evaluating their performance. 

The first method is based on a hybrid model that combines the adaptive MMPF [18-20], known for its 
stability, with SVM. The idea of using this method for electric load forecasting came from the fact that 
it was applied for wind speed prediction with very good results [21]. The data used now is not subjected 
to any prior – offline manipulation in order to remove weekly and annual seasonality as was done in 
previous cases [5]. That’s why in this case the MMPF implements a bank of extended Kalman filters 
(EKF) with ARMA models instead of simple Kalman filters (KF) with ARMA models in order to 
handle data’s non-linearities. MMPF with EKF combined with genetic algorithms (GA) were 
successfully applied in prediction of epilepsy and in the evolution of stock values using biomedical and 
financial data respectively [22]. 

The second method, presented analytically in [5], implements MMPF with ARMA models and from 
the real data applied annual and weekly seasonality have been removed. 

The third method incorporates a three layer feedforward ANN, with input variables ambient 
temperature T, relative humidity RH, day of the week WD, month of the year MY, contribution factor 
CF and output variable Electricity Demand Load EDL. 
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2   Method Presentation 

2.1   The Hybrid model (MMPF with SVM) 

This hybrid method is analytically presented in [21]. A schematic diagram of its operation is shown in 
Figure 1 below: 

 

Figure 1. Schematic representation of the hybrid model. 

The hybrid model proposed is based on a linear pattern, L(t) produced by the MMPA and a non-
linear one, NL(t) produced by the SVM. It can be represented as: 
 ( ) ( ) ( )= +Q t   L t   NL t   (1) 

Both parts are directly calculated from the electric load time series. 
If e(t) is the MMPA estimation error at any time instant t, then: 

 ( ) ( )= − �e t   Z t  ( )L t   (2) 
It is now the SVM that models these residuals as: 

 ( ) ( )− − −= … + ∆(t 1) (t 2) (t n)e t   f e ,  e , ,  e  t   (3) 

where f is non linear and Δt is random error.  
Consequently the forecast of the hybrid model is: 

 = +� � � �( ) ( ) ( )Q t L t NL t   (4) 

2.2   MMPF with KF 

This method is analytically presented and tested in [5]. A schematic diagram is shown in Figure 2. For 
both MMPF models 10 EKF or 10 KF were implemented. An important feature of the MMPF is that 
all the EKFs or KFs needed to be implemented can be independently realized. This enables to 
implement them in parallel, saving an enormous computational time [23]. 

2.3   ANN 

A typical three layer feed-forward (FF) ANN is presented in Figure 3. This architecture has four inputs, 
3 outputs and each node is represented by a single neuron. All layers between input and output ones are 
called hidden layers. In this case study one hidden layer is implemented. 
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Figure 2. MMPF with ARMA block diagram. Each KF implements an ARMA model. 

 

Figure 3. Structure of a three layer feedforward ANN. 

Every neuron can be modelled as shown in Figure 4. Each input x1 … xn is associated to an adjustable 
weight w1 … wn respectively. These two values are multiplied together. Additionally a bias input b 
maybe added as well. The combined inputs are summed and fed into an activation function which is 
actually the output of each neuron. 

 
=

= +∑
1

( )
n

j j
j

y k w x b   (5) 

where k is a logarithmic sigmoid function, or a hyperbolic tangent sigmoid function, or a hard limit 
function [24, 25]. 

Table 1. ANN architecture. 

Input Variables Output Variables 
Ambient Temperature T  
Relative Humidity RH 
Day of the week WD  
Month of the year MY 

Electricity Demand 
Load EDL 

Contribution factor CF  
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Figure 4. Structure of a three layer feedforward ANN. 

The contribution factor CF is estimated based on real data provided by the Hellenic Ministry of 
Economic and Finance and includes economic and social factors such as gross national product, gross 
domestic product and population [26]. 

The design and training of the ANN is shown in Table 2. 

Table 2. ANN design. 

Structure Learning Algorithm Transfer Function 
1 – 3 hidden layers Gradient Descent Hyperbolic Tangent Sigmoid 
2 – 30 neurons in each hidden layer Levenberg-Marqardt  Logarithmic Sigmoid 
  Hard - Limit 

 
The training of the ANN was done using the Matlab® neural network toolbox, and was accomplished 

using real data for all inputs and outputs covering the period from January 1st 2011 up to December 31st 
2015. For every training iteration 20% random data was rejected and the process was repeated until the 
root mean square error between the actual and the desired output was not more than 1%, or until a 
maximum number of epochs were performed (in our case it was set to 10,000 which constitutes a 
standard training procedure) [24, 25]. 

3   Results 

Figure 5 indicates the Hellenic power market daily system-wide load from January 1st 2014 to December 
21st 2016. Annual and weekly seasonalities are apparent. Another obvious fact is that the consumption is 
progressively decreasing. This possibly reflects the low level of economic output and consumer 
confidence of the country [27]. 

3.1   Day-Ahead Load Prediction Using a Time Interval of Two Months 

This application covers three different time periods. Period 1 covers from January 1st 2016 – February 
29th 2016, period 2 covers from April 1st 2016 – May 31st 2016 and finally period 3 covers from August 1st 
2016 – September 30th 2016. It must be noticed that the hybrid MMPF-SVM and ANN use the data 
presented in Figure 5, while the second method uses deseasonalized data as presented in [5]. Finally all 
three methods were trained using data up to December 31st 2015 and their performance was tested 
against new data covering the period of January 1st 2016 – December 31st 2016. 

From Figures 7, 9 and 11 it is obvious that all three methods perform successfully since the 
corresponding relative percentage error has a largest value of three. However a closer look indicates that 
the hybrid method of MMF-SVM outperforms the other two techniques. 
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Figure 5. Hellenic market daily system-wide load from January 1st 2014 – December 31st 2016. 

 

Figure 6. Hellenic market daily system-wide load from January 1st 2016 – February 29th 2016, compared with the 
three methods, day-ahead forecasts. 

 

Figure 7. Propagation of relative percentage error for day ahead forecasts (January 1st 2016 – February 29th 2016). 
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Figure 8. Hellenic market daily system-wide load from April 1st 2016 – May 31st 2016, compared with the three 
methods, day-ahead forecasts. 

 
Figure 9. Propagation of relative percentage error for day ahead forecasts (April 1st 2016 – May 31st 2016). 

 
Figure 10. Hellenic market daily system-wide load from August 1st 2016 – September 30th 2016, compared with the 
three methods, day-ahead forecasts. 
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Figure 11. Hellenic market daily system-wide load from August 1st 2016 – September 30th 2016, compared with the 
three methods, day-ahead forecasts. 

The relative percentage error in all cases was calculated as: 

 
 
 ×
 
 

Real Value -Predicted Value
100%

Real Value
  (6) 

3.2   Day-Ahead Load Prediction Using a Time Interval of One Week 

This is a test case in order to evaluate whether or not the techniques are able in forecasting the day-
ahead load accurately in a time interval of one week (short term forecasting). The data set under 
investigation is the electric load consumption from Monday July 4th 2016 up to Sunday July 10th 2016. 
Only MMPF (EKF-ARMA) and the ANN will be considered, since the MMPF (KF-ARMA) cannot be 
applied successfully in periodic data. A variation of the latter method using MMPF with KF and 
ARIMA models is suitable for such cases (with periodic data) and is analytically presented in [4]. 

This test is more challenging since both techniques should adopt the seasonalities contained in the 
data set much faster than in the two months period. Figures 12-15 depict that both methods perform 
satisfactorily in day-ahead forecasting over a time period of one week. The hybrid method MMPF 
(EKF-ARMA)-SVM, is however more accurate since its propagation of percentage error is always lower 
than the ANN’s. 

 

Figure 12. Hellenic market daily system-wide load from Monday July 4th 2016 up to Friday 8th 2016, compared 
with the MMPF (EKF-ARMA)-SVM and the ANN. 
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Figure 13. Hellenic market daily system-wide load from Saturday July 9th 2016 up to Sunday Friday 10th 2016, 
compared with the MMPF (EKF-ARMA)-SVM and the ANN. 

 

Figure 14. Propagation of relative percentage error for day ahead forecasts, using MMPF (EKF-ARMA)-SVM and 
the ANN (Monday July 4th 2016 up to Friday July 8th 2016). 

 

Figure 15. Propagation of relative percentage error for day ahead forecasts, using MMPF(EKF-ARMA)-SVM and 
the ANN (Saturday July 9th 2016 up to Sunday July 10th 2016). 
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3.3   Fault Detection 

In order to test the efficiency of the two methods, namely MMPF (EKF-ARMA)-SVM and ANN, a test 
dataset is created from real cases as shown in Figure 16. The dataset represents 10 working days and 
two weekends. In this dataset were deliberately introduced two failures (blackouts) and two peaks (high 
load demands). A similar work with good results has been done in [5], where the MMPF was loaded 
with four SARIMA models, (each one modelling one of weekdays, weekends, failure and peak). The 
disadvantage of this method is that the models were determined off-line, while in our case the two 
techniques are adjusted to the data provided without any prior data manipulation. 

 

Figure 16. Test data set containing faults. 

 

Figure 17. Test data set containing faults, compared with MMPF (EKF-ARMA)-SVM and the ANN. 

 

Figure 18. Propagation of relative percentage error using MMPF (EKF-ARMA)-SVM and the ANN. 
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Figure 17 indicates that the two methods under consideration detect successfully not only the changes 
from weekends to working days but also the faults (peak - high load demands and failures - blackouts) 
introduced equally well. Once more the hybrid method has constantly smaller percentage error than the 
ANN, as shown in Figure 18. 

4   Discussion 

Figures 6,8,10, concern the case of a midrange load forecasting and indicate that all three methods 
perform well and their predictions are very close to the real values since their percentage error is not 
grater that 3%. The same argument also holds for the day-ahead prediction using a time interval of a 
week as Figures 12 and 13 indicate. 

A closer look at Figures 7, 9, 11, 14, and 15 indicates that the hybrid model of MMPF (EKF-
ARMA)+SVM performs much better than the rest since it has the lowest percentage error. The actual 
reason is because although the MMPF is indeed adaptive has a main disadvantage which is that in its 
initial structure is not able to handle non-linearities and seasonalities. Its implementation with the EKF 
tackles the successfully non-linearity problem but not the second one. A solution to this comes with its 
combination with the SVM. The problem of complexity and computational burden is overcome since the 
separate EKF’s can be parallel implemented, thus saving enormous computational time. A decision of 
how many EKF’s have to be implemented needs to be taken. The more filters considered the greater the 
precision but also the greater the complexity, a fact that creates problems, especially if on-line 
prediction is required. Literature shows [2, 3, 22] that a maximum number of 10 parallel EKF’s are 
adequate in producing a reliable and fast prediction. 

For the sake of completeness of this research a fault detection scenario is designed. It contains two 
faults and two peaks in a time interval of 15 working days (Figure 16). Only the hybrid MMPF (EKF-
ARMA)+SVM and the ANN were considered in this case. Both methods perform satisfactorily (Figure 
17) but the hybrid one outperforms the ANN in terms of relative percentage error, since its maximum 
value is not greater than 1.5% (Figure 18). 

5   Conclusions 

The purpose of this work is to apply and compare the performance of adaptive methods into electric 
load demand forecasting. Real data supplied by the Hellenic Public Power Corporation S.A. [28] was 
used. All three methods performed satisfactorily but the hybrid method MMPF (EKF-ARMA)-SVM 
seem to outperform the rest two methods in terms of its percentage relative error. Additionally the 
hybrid MMPF (EKF-ARMA)-SVM and the ANN method doesn’t need deseasonalizing, or prior 
manipulations of the dataset as was the case in [3-5] and can handle with accuracy any anomalies 
detected. The last feature is what makes both MMPF (EKF-ARMA)-SVM and ANN useful tools for 
system administrators, in the sense of uninterrupted energy supply. 
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