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Abstract Using Weyl geometry, we study some properties of the scalar φ-field representing the
conformally flat part of the Schwarzschild-Kruskal-Szekeres (S-K-S) metric in the black hole region.
As expected, the classical field diverges (logarithmically) at the singularity, where it is infinitely
heavy, but remains finite at the horizons, where it becomes massless. The quantum propagator in
the radial direction is also computed, exhibiting rapid oscillations and a divergent absolute value at
the singularity.
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1 Introduction

It is well known that a Weyl geometry [1] with vanishing or flat 1-form (integrable Weyl geometry) is
equivalent to a Riemannian geometry. This equivalence allows us to interpret a conformally flat metric as
a massless scalar field φ in Minkowski spacetime [2,3]. Examples of the use of this equivalence include
the study of the quantum fluctuations of the four-dimensional anti-De Sitter spacetime, with interesting
results [3]. In the present paper, we apply the aforementioned equivalence to the 2-dimensional conformally
flat part of the Schwarzschild-Kruskal-Szekeres (S-K-S) [4,5,6] metric. Classically the field φ diverges
logarithmically at the singularity, remaining finite at the horizons. Eliminating, through a change of
coordinates, the time variable (t) in favor of the Schwarzschild radial coordinate (r), allows us to integrate
over the spatial coordinate (x) in the action for the the field φ, leading to an effective 1-dimensional action
density corresponding to a non-relativistic particle with r-dependent mass, infinite at the singularity and
zero at the horizons, with a linear potential proportional to φ. The quantum propagator represented by a
Feynman path integral [7] with quadratic integrand can be computed exactly using standard techniques
[8], which exhibits strong oscillations and a divergent absolute value at the singularity.

The result, incomplete as it stands since it is two-dimensional instead of four-dimensional -it ignores
the angular variables-, suggests that the behavior of a true quantum theory of black holes would exhibit,
at least, large fluctuations near or at the classical singularity. It is not clear how the non-conformal part
of the metric could totally suppress the infinite divergences found here. In any case, the attempt of this
paper is to taste the quantum behavior of the metric at the singularity.

We use the Natural System of units: c = G = h̄ = 1.

2 Weyl and Riemann Geometries

Weyl geometry, which originated as an attempt to unify Einstein general relativity with electromagnetism,
is the generalization of Riemannian geometry in which lengths of vectors L = ||V ||2 are allowed to
change by path dependent scale factors s = e

∫
c
W after parallel transport along smooth curves c:

L → L′ = sL. W is the Weyl field transforming as a 1-form under local coordinates transformations.
This is equivalent to the statement that the covariant derivative of the metric with respect to the Weyl
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connection (ΓW )µνρ = (ΓLC)µνρ +Wµ
νρ is given by D(W )

µ gνλ = −Wµgνλ, where (ΓLC)µνρ is the Levi-Civita
connection and Wµ

νρ = 1
2 (δµνWρ+δµρWν−gνρgµλWλ) is the Weyl tensor. Instead, in Riemannian geometry,

vector fields can only rotate after parallel displacement, and D(LC)
µ gνλ = 0.

As mentioned in the Introduction, any Riemannian manifold (Mn
R, gµν) can be identified with a Weyl

manifold [1,2,3] (Mn
W , gµν ,W ) with zero Weyl fieldW = Wµdxµ or with zero gauge curvature i.e.W = dα

with α a smooth function. Then, in particular,

(Mn
R, gµν) ≡ (Mn

W , gµν , 0) (1)

with Mn
R = Mn

W = Mn as differentiable manifolds, since the differentiable structure is a substratum of
the metric structure. After a Weyl symmetry transformation (invariance of L′)

gµν → g′µν = λ−1gµν , W →W ′ = W − λ−1dλ, (2)

where λ is a smooth positive function, λ−1gµν a conformal change of the metric, and W − λ−1dλ a gauge
transformation of the Weyl field, one has

(Mn, gµν , 0) ∼ (Mn, λ−1gµν ,−λ−1dλ), (3)

where ∼ denotes equivalence within the Weyl class [(Mn, gµν , 0)]. In particular, when

gµν = eφηµν (4)

where φ is a real function of the xµ’s and ηµν = diag(1,−1, · · · ,−1) is the n-dimensional Minkowski
metric, the choice

λ = eφ (5)

leads to
(Mn, eφηµν , 0) ∼ (Mn, ηµν ,−dφ) (6)

i.e. W = dφ. Since d2 = 0 the r.h.s. of (6) has zero gauge curvature and therefore

(Mn, eφηµν) ≡ (Mn, ηµν ,−dφ). (7)

I.e., classically, the whole gravitational information in (Mn, eφηµν) is encoded in the field φ living in
Minkowski space. If the equation of motion of the φ-field admits a Lagrangian, then the corresponding
quantum theory can, in principle, be constructed via the Feynman path integral method.

3 S-K-S Metric

The maximal analytic extension of the Schwarzschild metric is the Schwarzschild-Kruskal-Szekeres metric
[4,5,6] given by

ds2(t, x, θ, ϕ) = 8M
r
e−

r
2M (dt2 − dx2)− r2dΩ2 (8)

where 2M , the Schwarzschild radius, is the position of the future and past horizons, dΩ2 = dθ2 +sin2θdϕ2,
t ∈ (−∞,+∞), x ∈ (−∞,+∞), [t] = [x] = [r] = [length], r > 0 (the singularities, future and past)
depends implicitly on t and x i.e. r = r(t, x) through

x2 − t2 = 4M2( r

2M − 1)er/2M . (9)

(In the usual dimensionless coordinates U = x/2M and V = t/2M the factor 4M2 in the r.h.s. of (9)
would be abscent.)

As is well known, the Kruskal-Szekeres coordinates are usually defined through a change of variables
involving the Eddington-Finkelstein coordinates. Physically, the K-S coordinates are locally inertial
coordinates at the future and past horizons of the Schwarzschild black hole. They can also be thought as
natural affine parameters for the generators of such horizons [9].
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The Kruskal diagram of the S-K-S metric is exhibited in Fig. 2. The regions above and below the two
horizons r = 2M are, respectively, the black hole and white hole regions, while the right and left wedges
are the asymptotically flat (r →∞) regions. (Since we are interested in the black hole we omit in the
diagram the symmetric singularity in the white hole, also at r=0.)

The conformally flat part of the metric is

ds2
cf = eφ(dt2 − dx2), (10)

where φ is a classical 2-dimensional field in Minkowski space (t, x) given by

φ = φ(r) = ln(8M
r

)− r

2M . (11)

Clearly, φ diverges logarithmically (φ→ +∞) as r → 0 and linearly (φ→ −∞) as r →∞ (asymptotically
flat regions), at the horizons φ(2M) = 2 ln 2− 1,

φ′(r) = dφ(r)
dr = −(1

r
+ 1

2M ) < 0, (12)

and φ′′(r) = 1/r2. (See Fig. 1.)

Figure 1. Classical field φ in 2-dimensional Minkowski space.

In the black hole (B.H.) region, t ∈ [0,+∞) and x ∈ (−∞,+∞); for each x, r ∈ [2M, 0) and

t = t(x, r) =
√
f(r) + x2 (13)

with
f(r) = 4M2(1− r

2M )er/2M . (14)

Also, t(x, 2M) = |x| and limr→0t(x, r) =
√
x2 + 4M2. (See Fig. 2.)

Using

∂φ

∂t
= dφ

dr
∂r

∂t
,
∂φ

∂x
= dφ

dr
∂r

∂x
,
∂2φ

∂t2
= d2φ

dr2 (∂r
∂t

)2 + dφ
dr (∂

2r

∂t2
), ∂

2φ

∂x2 = d2φ

dr2 ( ∂r
∂x

)2 + dφ
dr ( ∂

2r

∂x2 ) (15)
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Figure 2. Black hole region in the S-K-S metric.

and, through the use of the implicit function theorem,

∂r

∂t
= −

∂F
∂t
∂F
∂r

= −2t
r
e−r/2M ,

∂r

∂x
= −

∂F
∂x
∂F
∂r

= 2x
r
e−r/2M ,

∂2r

∂t2
= −2

r
e−r/2M − 4t2

r3 e
−r/M (1 + r

2M ), ∂
2r

∂x2 = 2
r
e−r/2M − 4x2

r3 e−r/M (1 + r

2M ), (16)

where
F (t, x, r) := t2 − x2 − f(r) = 0, (17)

the wave equation for the φ-field is
∂2φ

∂t2
− ∂2φ

∂x2 = Φ(r) (18)

where
Φ(r) = 32M2

r4 e−r/2M (19)

is a source for φ. Φ→ +∞ as r → 0 and Φ(2M) = 2
M2e . (See Fig. 3.)

It is clear that the equation satisfied by φ is not unique, but once the differential operator in the l.h.s.
of (18) is chosen -in this case the d’Alembertian in two-dimensional Minkowski spacetime- the source
term in the r.h.s. appears automatically as a consequence of the S-K-S metric (8) which is a solution of
Einstein equations in four dimensions. In two spacetime dimensions Einstein relativity is trivial and in
alternative theories of gravity like that in ref. [10], the equation for a conformally flat metric eϕηµν in
vacuum and without cosmological constant is ( ∂

2

∂t2 −
∂2

∂x2 )ϕ = 0 [2].
It is easily verified that (18) can be derived from the Lagrangian density

LBH = 1
2(ηµν(∂µφ)(∂νφ) + 2Φφ) (20)

with ηµν = diag(1,−1), µ, ν = t, x. There is the corresponding action

SBH =
∫ +∞

−∞
dx

∫ √x2+4M2

x

dt LBH = 1
2

∫ +∞

−∞
dx

∫ √x2+4M2

x

dt ((∂φ
∂t

)2− (∂φ
∂x

)2 + 64M2

r4 e−r/2Mφ) (21)
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Figure 3. Source of the φ-field in the BH region.

which, after the change of variables (x, t)→ (x, r) with Jacobian ∂(x,r)
∂(x,t) = − 2t

r e
−r/2M becomes

SBH = 4M2
∫ 2M

0
dr

∫ +∞

−∞

dx√
f(r) + x2

1
r

((1− r

2M )(φ′(r))2 + (2
r

)2φ). (22)

The x-integration can be done explicitly, though it gives the infinite factor (logarithmic divergence)∫ +∞
−∞

dx√
f(r)+x2

= limN→∞
∫ +N
−N

dy√
1+y2

= 2limN→∞ lnN = +∞. Since we can approach the singularity
r = 0 at any fixed value of the spatial coordinate x, and since the purpose is to compute the quantum
propagator from the singularity to any point within or at the horizon, we factor out this infinity and
define an r-regulated effective action “density”

sBH = limε→0sBHε, (23)

sBHε = 4M2
∫ 2M

ε

dr
r

((1− r

2M )(φ′(r))2 + (2
r

)2φ(r)). (24)

The quantum propagator from the (divergent) configuration φ1 = φ(ε) = ln( 8M
ε ) − ε

2M to φ2 =
φ(2M) = 2 ln 2− 1 is given by the path integral [7]

< φ2|φ1 >ε=
∫ φ2

φ1

Dφ e4iM2
∫ 2M

ε

dr
r ((1− r

2M )(φ′(r))2+( 2
r )2φ(r))

, (25)

which corresponds to the non-relativistic motion of a particle with an r dependent effective mass

meff (r) = 8M2

r
(1− r

2M ), (26)

infinitely heavy at the singularity: meff (ε) ∼ 1
ε → ∞, and massless at the horizons: meff (2M) = 0.

(Reminding that within the horizons, r behaves as a timelike coordinate τ , the equivalent 1-dimensional
Lagrangian would be L = 1

2m(τ)q̇(τ)2 + ( 4M
τ )2q(τ).)

The path integral, being quadratic, can be computed exactly by standard methods [8], and the result
is

< φ2|φ1 >ε= eisBHε(φcl) < φ = 0, 2M |φ = 0, ε >, (27)
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where φcl is given by (11),

sBHε(φcl) = 5
2 − 4 ln 2− (1

2 − 4 ln 2)(2M
ε

)2 − (1− 2(2M
ε

)2) ln(2M
ε

)− 3(2M
ε

) + ε

2M , (28)

and

< φ = 0, 2M |φ = 0, ε >=
∫
y(ε)=y(2M)=0

Dye
i
2

∫ 2M

ε
drmeff (r)(y′(r))2

=

√
meff (ε)

2πi(2M − ε) . (29)

As ε→ 0,

< φ2|φ1 >ε' e2i( 2M
ε )2 ln( 2M

ε )
√
M

πε
(1− i), (30)

which strongly oscillates and diverges at the singularity. In absolute value,

| < φ1|φ2 >ε | '
√

2M
πε

. (31)

4 Final Comments

Though using Weyl geometry only the conformally flat part of the S-K-S metric can be interpreted as a
scalar field in Minkowski spacetime, and therefore can be easily quantized through standard methods e.g.
the Feynman path integral, we do not expect that the non-conformal part of the metric -the 2-spheres
S2(r)- for which the Weyl trick can not be applied, can smoothen the violent oscillations and divergence
exhibited by the quantum behavior of the metric in the neighbourhood of the singularity. We agree of
course that the present analysis is far from complete -only the time/radial part of the black hole geometry
is considered-; however, at least it gives a feeling of what happens, at the quantum level, in the otherwise
misterious -collapse to a point- classical behavior at the singularity.
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CONICET, Argentina); also thanks IAFE for its hospitality.
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