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Abstract We discuss the Aharonov-Bohm (A−B) effect and the Dirac (D) monopole of magnetic
charge g = 1

2 in the context of bundle theory, which allows to exhibit a deep geometric relation
between them. If ξA−B and ξD are the respective U(1)-bundles, we show that ξA−B is isomorphic
to the pull-back of ξD induced by the inclusion of the corresponding base spaces. The fact that the
A−B effect disappears when the magnetic flux in the solenoid equals an integer number of times
the quantum of flux associated with the unit of electric charge, reflects here as a consequence of the
pull-back of the Dirac connection in ξD to ξA−B , and the Dirac quantization condition.
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1 Introduction

As is well known, the Aharonov-Bohm (A−B) effect [1] and the Dirac (D) magnetic monopole [2],[3]
proposal have had a profound influence on the development of the gauge theories of fundamental
interactions. The first one of these phenomena was immediately verified experimentally [4] and by many
others later on [5], while even if Dirac monopoles have not yet being seen in Nature, both grand unified
theories [6] and string theories [7] predict their existence.

The description of both the A− B effect and the D monopole are deeply rooted in the concept of
gauge potential and therefore in the concept of connection in fiber bundles. The first one provides an
explicit evidence of the non-local character of quantum mechanics describing the motion of electrically
charged particles in a non-simply connected space [8],[9], while the second one makes unavoidable the use
of at least two charts on manifolds to define the gauge potential, leading to the necessity of a description
in terms of a non-trivial bundle [10].

The close relationship between both phenomena consists in the facts that when the magnetic flux
ΦA−B is an integer multiple of the quantum of flux Φ0 = 2π

|e| associated with the electric charge |e|, the
A − B effect vanishes, and when ΦA−B also equals the magnetic flux of the monopole, ΦD, the Dirac
quantization condition (D.Q.C.) follows. In this note we want to emphasize this relation at a perhaps
deeper level, namely through the relationship between the fiber bundles ξA−B (trivial) and ξD (non-trivial)
in which both phenomena occur. After some basic material in section 2., in section 3. we exhibit the
bundle morphism ξA−B → ξD induced by the inclusion ι between the corresponding base spaces, and in
section 4. we use ι to construct the pull-back bundle ι∗(ξD), which in turn is proved, in section 5., to be
isomorphic to ξA−B i.e.

ξA−B ∼= ι∗(ξD). (1)

This is the main result of the present paper, since it exhibits a deep geometric relation between the
A−B effect and the magnetic monopole. Of course, the pull-back of the first Chern class c1 of ξD, ι∗(c1),
vanishes in ξA−B, what is proved in section 6. In section 7. we show that the pull-back of the Dirac
connection from ξD to ξA−B leads to the vanishing of the A − B effect when the D.Q.C. holds, thus
setting on purely geometric grounds, one of the basic relations between A−B and D. Section 8 is devoted
to final comments.

We use the natural system of units ~ = c = 1.
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2 Basics

In Ref. [8], the U(1)-bundle associated with the A−B effect [1] with an infinitesimally thin and infinitely
long solenoid was shown to be the product -and therefore trivial- bundle

ξA−B : S1 → (T 2
0 )∗ pr1−→ (D2

0)∗ (2)

where S1 = U(1) = {z ∈ C, |z| = 1} is the structure group, (D2
0)∗ is the punctured open disk in two

dimensions, (T 2
0 )∗ = (D2

0)∗ × S1 is the open solid 2-torus minus a circle, and pr1 is the projection in the
first entry. One has the homeomorphisms (D2

0)∗ ∼= (R2)∗ = R2 \ {0} ∼= C∗ = C \ {0}. The reason for
(2) is that, in the above conditions, by symmetry reasons the space available to the electrically charged
particles (“electrons") moving around the solenoid is (R2)∗ which is of the same homotopy type as the
circle S1. Then the set of isomorphism classes of U(1)-bundles over (R2)∗ consists of only one element
[11]: the class of the product (trivial) bundle (T 2

0 )∗.
On the other hand, the fiber bundles associated with Dirac monopoles [2],[3] of magnetic charge

g = #k with k an integer and # a number depending on units, are the Hopf bundles [10],[12]

ξ
(k)
D : S1 → P 3

k
πk−→ S2 (3)

where P 3
0 = S2 × S1 (the trivial bundle), P 3

k
∼= P 3

−k, S2 is the 2-sphere with S2 ∼= R2 ∪ {∞} ∼= C ∪ {∞}.
In particular, we are interested in the case k = 1 for which P 3

1
∼= S3: the 3-sphere given by

S3 = {(z1, z2) ∈ C2, |z1|2 + |z2|2 = 1}, (4)

π3 ≡ π is the Hopf map [13]

π : S3 → S2, (z1, z2) 7→ π(z1, z2) =
{
z1/z2, z2 6= 0
∞, z2 = 0 . (5)

We denote this non-trivial bundle ξD:

ξ
(1)
D ≡ ξD : S1 → S3 π−→ S2. (6)

The global connection on ξD corresponding to g = 1
2 (# = 1

2 and k = 1) is the 1-form ω ∈ Ω1S3 ⊗ u(1),
with u(1) = Lie(U(1)) = iR, given by [14]

ω = i

2(dχ+ cosθdϕ), (7)

where χ, θ and ϕ are the Euler angles in S2 or R3 (θ ∈ [0, π] and χ, ϕ ∈ [0, 2π)). The differential of ω is
the 2-form

dω = − i2sinθdθ ∧ dϕ = −F ∈ Ω2S3 ⊗ u(1) (8)

where F is the field strength
F = i|B|sinθdθ ∧ dϕ (9)

with
B = (1

2) r
r3 (10)

the magnetic field of the monopole in R3 \ {0} (see below).
ω can be read from the squared length element on S3:

dl2S3(χ, θ, ϕ) = 1
4(dθ2 + sin2θdϕ2 + (dχ+ cosθdϕ)2) (11)

which, in turn, can be obtained from the identification of S3 with the group SU(2) with elements(
z1 z2
−z̄2 z̄1

)
=
(

e
i
2 (ϕ+χ)cos θ2 e

i
2 (ϕ−χ)sin θ2

−e− i
2 (ϕ−χ)sin θ2 e

− i
2 (ϕ+χ)cos θ2

)
. (12)
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Covering S2 with the open sets U+ and U− respectively defined by θ ∈ [0, π) (the south pole S
excluded) and θ ∈ (0, π] (the north pole N excluded), considering the pull-back of ω to S2 \ {N,S} with
the local sections

sN : U+ \ {N} → S3, sN (n̂) = (cosθ2 , sin
θ

2e
iϕ), (13a)

sS : U− \ {S} → S3, sS(n̂) = (cosθ2e
iϕ, sin

θ

2), (13b)

with n̂ = (sinθcosϕ, sinθsinϕ, cosθ), using the inclusion

j : S3 → R4, j(z1, z2) = (x1, x2, x3, x4)

= (cos(ϕ+ χ

2 )cosθ2 , sin(ϕ+ χ

2 )cosθ2 , cos(
ϕ− χ

2 )sinθ2 , sin(ϕ− χ2 )sinθ2), (14)

and defining the 1-form ω̃ ∈ Ω1R4 ⊗ u(1) through

ω̃ = i(x1dx2 − x2dx1 − x3dx4 + x4dx3), (15)

one can prove that j∗(ω̃) = ω and that s∗N,S(ω) are the usual local 1-forms A± on S2, namely

A+(θ, ϕ) = s∗N (ω)(θ, ϕ) = (j ◦ sN )∗(ω̃)(θ, ϕ) = − i2(1− cosθ)dϕ, (16a)

A−(θ, ϕ) = s∗S(ω)(θ, ϕ) = (j ◦ sS)∗(ω̃)(θ, ϕ) = i

2(1 + cosθ)dϕ. (16b)

The corresponding u(1)-valued 3-vector potentials are

A+ = −i1− cosθ2rsinθ ϕ̂, A− = +i1 + cosθ

2rsinθ ϕ̂, (17a)

defined also at θ = 0 (A+) and θ = π (A−):

A+(θ = 0) = A−(θ = π) = 0 (17b)

and on a 2-sphere of arbitrary radius r > 0. Clearly, the rotor of A+ and A− gives the magnetic field B.
The first Chern class of ξD (taking S2 with unit radius) is given by

c1(ξD) = i

2π [F ] (18)

where [F ] is the cohomology class of F in H2(S2): cohomology of the 2-sphere in dimension 2. The
integral of i

2πF over S2 gives the first Chern number of ξD:

i

2π

∫
S2
F = 1. (19)

This means that the magnetic charge is a measure of the topological non-triviality of the bundle ξD i.e. of
the space where it “lives". In other words, the monopole charge is not a property of the gauge field A±
itself, but of the U(1)-bundle on which the monopole is a connection.

3 Bundle Morphism ξA−B → ξD

Using the homeomorphisms (D2
0)∗ ∼= C∗ and S2 ∼= C ∪ {∞}, it can be easily verified that (ι,ῑ) given by

ι : C∗ → C ∪ {∞}, ι(z) = z (20)

and
ῑ : C∗ × S1 → S3, ῑ(z, eiϕ) = (z, 1)

||(z, 1)||e
iϕ (21)
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with ||(z, 1)|| =
√

1 + |z|2, and (ψA−B ,ψD) the right actions

ψA−B : (C∗ × S1)× S1 → C∗ × S1, ψA−B((z, eiα), eiβ) = (z, ei(α+β)) (22)

and
ψD : S3 × S1 → S3, ψD((z1, z2), eiλ) = (z1e

iλ, z2e
iλ) (23)

is the unique bundle morphism
ξA−B → ξD (24)

induced by the inclusion ι i.e.
π ◦ ῑ = ι ◦ pr1 (25)

and
ψD ◦ (ῑ× IdS1) = ῑ ◦ ψA−B (26)

namely, with lower and upper parts of Diagram 1 commuting.

(C∗ × S1)× S1 ῑ×IdS1−→ S3 × S1

ψA−B ↓ ↓ ψD
C∗ × S1 ῑ−→ S3

pr1 ↓ ↓ π
C∗ ι−→ C ∪ {∞}

Diagram 1
In fact:

π ◦ ῑ(z, eiϕ) = π( (z, 1)
||(z, 1)||e

iϕ) = z,

ι ◦ pr1(z, eiϕ) = ι(z) = z;

ψD ◦ (ῑ× IdS1)((z, eiϕ), eiλ) = ψD(ῑ(z, eiϕ), eiλ) = (z, 1)
||(z, 1)||e

i(ϕ+λ),

ῑ ◦ ψA−B((z, eiϕ), eiλ) = ῑ(z, ei(ϕ+λ)) = (z, 1)
||(z, 1)||e

i(ϕ+λ).

4 Pull-back of ξD by ι: ι∗(ξD)

The total space of the induced or pull-back bundle [14] of ξD by ι, ι∗(ξD) : S1 → Pι∗(ξD)
pr1−→ C∗, is defined

by
Pι∗(ξD) = {(z, (z1, z2)) ∈ C∗ × S3, ι(z) = π(z1, z2)} (27)

and must be such that both the upper and lower parts of Diagram 2 commute i.e. such that (ι,pr2) is a
bundle morphism ι∗(ξD)→ ξD. In Diagram 2, pr2 is the projection in the second entry, and

ψι∗(ξD) : Pι∗(ξD) × S1 → Pι∗(ξD), ψι∗(ξD)((z, (z1, z2)), eiλ) = (z, (z1, z2)eiλ) (28)

is the right action of S1 on Pι∗(ξD).

Pι∗(ξD) × S1 pr2×IdS1−→ S3 × S1

ψι∗(ξD) ↓ ↓ ψD
Pι∗(ξD)

pr2−→ S3

pr1 ↓ ↓ π
C∗ ι−→ C ∪ {∞}

Diagram 2
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From
ι ◦ pr1 = π ◦ pr2 (29)

one has:
ι ◦ pr1((z, (z1, z2)) = ι(z) = z,

π ◦ pr2((z, (z1, z2)) = π(z1, z2) = z1/z2,

so z1 = z2z and ||(z1, z2)|| = 1 implies (z1, z2) = (z,1)
||(z,1)||e

iϕ. Then,

Pι∗(ξD) = {(z, (z, 1)
||(z, 1)||e

iϕ), z ∈ C∗, ϕ ∈ [0, 2π)} ⊂ C∗ × S3. (30)

On the other hand, it holds
ψD ◦ (pr2 × IdS1) = pr2 ◦ ψι∗(ξD). (31)

In fact:
ψD ◦ (pr2 × IdS1)((z, (z1, z2)), eiλ) = ψD((z1, z2)eiλ) = (z1e

iλ, z2e
iλ),

pr2 ◦ ψι∗(ξD)((z, (z1, z2)), eiλ) = pr2((z, (z1, z2)eiλ)) = (z1, z2)eiλ = (z1e
iλ, z2e

iλ).

5 Bundle Isomorphism: ι∗(ξD)
∼=−→ ξA−B

In this section we exhibit a “natural" isomorphism between the A − B bundle and the pull-back by
the inclusion ι : C∗ → C ∪ {∞} (i.e. ι : (D2

0)∗ → S2 up to homeomorphisms) of the Dirac bundle ξD
corresponding to unit magnetic charge, thus establishing a deep relation between the two systems (A−B:
experimentally observed, and D: only theoretical, up to now).

The homeomorphism between the total spaces of the bundles is given by

Ψ : Pι∗(ξD) → C∗ × S1, Ψ(z, (z, 1)
||(z, 1)||e

iϕ) = (z, eiϕ). (32)

It is clear that Ψ is continuous, one-to-one and onto, with continuous inverse Ψ−1. It is easily verified
that Diagram 3, corresponding to this isomorphism, commutes in its upper and lower parts i.e.

pr1 ◦ Ψ = IdC∗ ◦ pr1 (33)

and
ψA−B ◦ (Ψ × IdS1) = Ψ ◦ ψι∗(ξD). (34)

Pι∗(ξD) × S1 Ψ×IdS1−→ (C∗ × S1)× S1

ψι∗(ξD) ↓ ↓ ψA−B
Pι∗(ξD)

Ψ−→ C∗ × S1

pr1 ↓ ↓ pr1

C∗ IdC∗−→ C∗

Diagram 3
In fact:

pr1 ◦ Ψ(z, (z, 1)
||(z, 1)||e

iϕ) = pr1(z, eiϕ) = z,

IdC∗ ◦ pr1(z, (z, 1)
||(z, 1)||e

iϕ) = IdC∗(z) = z;

ψA−B◦(Ψ×IdS1)((z, (z1, z2)), eiλ) = ψA−B(Ψ((z, (z1, z2)), eiλ)) = Ψ(z, (z1, z2))eiλ = Ψ(z, (z, 1)
||(z, 1)||e

iϕ)eiλ

= (z, eiϕ)eiλ = (z, ei(ϕ+λ)),

Ψ ◦ ψι∗(ξD)((z, (z1, z2)), eiλ) = Ψ(z, (z1, z2)eiλ) = Ψ(z, (z, 1)
||(z, 1)||e

i(ϕ+λ)) = (z, ei(ϕ+λ)).
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6 Chern Classes
ξA−B is the pull-back of ξD by the inclusion ι : (D2

0)∗ → S2; however, since ξA−B is trivial, then all its
Chern classes must vanish. Then, in particular, we must verify the vanishing of the pull-back of c1.

ξA−B = ι∗(ξD) passes to cohomology [15] in the form
ι∗ : H∗(S2)→ H∗((D2

0)∗) (35a)
i.e.

ι∗ : Hk(S2)→ Hk((D2
0)∗), k = 0, 1, 2 (35b)

where
H∗(S2) = (H0(S2), H1(S2), H2(S2)) ∼= (R, 0,R) (36)

and
H∗((D2

0)∗) = (H0((D2
0)∗), H1((D2

0)∗), H2((D2
0)∗)) ∼= (R,R, 0) (37)

are the cohomology groups of the 2-sphere and the punctured disk respectively. H∗((D2
0)∗) ∼= H∗(S1) by

homotopy invariance. Since c1 ∈ H2(S2), then
ι∗(c1) = 0. (38)

7 Pull-back of the Dirac Connection and Vanishing of the A−B Effect
In terms of the cartesian coordinates in R3, (x, y, z) = r(sinθcosϕ, sinθsinϕ, cosθ) with θ ∈ (0, π) and
ϕ ∈ [0, 2π) which implies (x, y, z) 6= (0, 0, z), the monopole potentials A± of equations (16a) and (16b)
are given by

A±(x, y, z) = (A±)xdx+ (A±)ydy (39)
with

(A±)x(x, y, z) = ± i2( y

x2 + y2 )(1∓ z√
x2 + y2 + z2

), (A±)y(x, y, z) = ∓ i2( x

x2 + y2 )(1∓ z√
x2 + y2 + z2

).

(40)
(Notice that [(A±)x] = [(A±)y] = [L]−1 since [x] = [y] = [z] = [L] while [A±] = [L]0, L: length.)

To pull-back by ι these 1-forms to (D2
0)∗ we must first restrict A± to z = 0 and then perform the

pull-back operation, which reduces to the identity:

ι∗(A±(x, y, 0)) = ± i2(ydx− xdy
x2 + y2 ) := ia±(x, y) (41)

with
a±(x, y) = ∓1

2(xdy − ydx
x2 + y2 ) (42)

the real-valued A−B potential 1-forms. Clearly, a± are closed (da± = 0) but not exact since a± = ∓ 1
2dϕ

only for ϕ ∈ (0, 2π). If we surround the thin solenoid in the A − B side with closed curves γ± with
γ− = −γ+, then the surrounded magnetic flux is

ΦA−B =
∫
γ+

a++
∫
γ−

a− =
∫
γ+

a++
∫
γ−

(−a+) =
∫
γ+

a+−
∫
γ+

(−a+) = 2
∫
γ+

a+ = 2
∫
γ+

(−1
2dϕ) = −2π,

(43)
which coincides, up to a sign, with the flux of the monopole:

ΦD =
∫
S2
B = (1

2)
∫
S2

r̂ · r̂
r2 = (1

2)4π = 2π. (44)

But this implies that the A − B effect vanishes if and only if the value of the electric charge |e| is an
integer: the D.Q.C. for the present case where g = 1

2 . In fact, with Φ0 = 2π
|e| the quantum of magnetic

flux associated with the charge |e|, the phase change of the wave function in the A−B experiment due
to the presence of magnetic flux is

e−i|e|ΦA−B = e−2πi
ΦA−B
Φ0 = e2πiΦDΦ0 = ei|e|(

1
2 )4π = e2πi|e| = 1⇔ |e| = n ∈ Z. (45)

(For arbitrary g, the D.Q.C. would be |e|g = n
2 .)
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8 Final Comments

It is well known that the A−B effect and the Dirac monopole are closed related [16]; in particular the
disappearance of the Dirac string simultaneously with the vanishing of the A−B effect when appropriate
conditions of the magnetic fluxes are fulfilled [17]. In the present paper, the above relation has been
described in the context of the fiber bundles associated with both phenomena, respectively ξA−B (trivial)
and ξD (non-trivial Hopf bundle). The remarkable fact is that ξA−B turns out to be the pull-back of
ξD by the inclusion ι of the corresponding base spaces, which allows to discuss the above relation in a
purely geometric language. It would be interesting to investigate if this bundle theoretic relation exists in
non-abelian cases.
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