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Abstract The nonlinear and novel Bohm-Poisson-Schrödinger equation proposed by us is studied
further. It has solutions leading to repulsive gravitational behavior. An exact analytical expression
for the observed vacuum energy density is obtained. Further results are provided which include
two possible extensions of the Bohm-Poisson equation to the full relativistic regime. Two specific
solutions to the novel Relativistic Bohm-Poisson equation (associated to a real scalar field) are
provided encoding the repulsive nature of dark energy. One solution leads to an exact cancellation
of the cosmological constant, but an expanding decelerating cosmos; while the other solution leads
to an exponential accelerated cosmos consistent with a de Sitter phase, and whose extremely small
cosmological constant is Λ = 3

R2
H

, consistent with current observations. We conclude with some
final remarks about Weyl’s geometry.
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1 Introduction

In physical cosmology and astronomy, dark energy is an unknown form of energy which is hypothesized to
permeate all of space, tending to accelerate the expansion of the universe [1] . Assuming that the standard
model of cosmology is correct, the best current measurements indicate that dark energy contributes 68.3
percent of the total energy in the present-day observable universe. The mass-energy of dark matter and
ordinary (baryonic) matter contribute 26.8 and 4.9 percent respectively, and other components such as
neutrinos and photons contribute a very small amount. The density of dark energy much less than the
density of ordinary matter or dark matter within galaxies. However, it dominates the mass-energy of the
universe because it is uniform across space [1]. Two proposed forms for dark energy are the cosmological
constant, [2] representing a constant energy density filling space homogeneously, and scalar fields such as
quintessence or moduli, dynamic quantities whose energy density can vary in time and space.

The nature of dark energy is more hypothetical than that of dark matter, and many things about the
nature of dark energy remain matters of speculation [1]. Dark energy is thought to be very homogeneous,
not very dense and is not known to interact through any of the fundamental forces other than gravity.
In the models based on the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric, it can be shown
that a strong constant negative pressure in all the universe causes an acceleration in universe expansion
if the universe is already expanding, or a deceleration in universe contraction if the universe is already
contracting. This accelerating expansion effect is sometimes labeled “gravitational repulsion".

A major outstanding problem is that quantum field theories predict a huge cosmological constant,
more than 100 orders of magnitude too large. This would need to be almost, but not exactly, cancelled
by an equally large term of the opposite sign. Some supersymmetric theories require a cosmological
constant that is exactly zero, which does not help because supersymmetry must be broken. Nonetheless,
the cosmological constant is the most economical solution to the problem of cosmic acceleration. Thus,
the current standard model of cosmology, the Lambda-CDM (cold dark matter) model, includes the
cosmological constant as an essential feature [1].

The evidence for dark energy is heavily dependent on the theory of general relativity. Therefore, it is
conceivable that a modification to general relativity also eliminates the need for dark energy. There are
very many such theories, and research is ongoing [3], [4], [9], [12], [16]. Some authors believe that the
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measurement of the speed of gravity with the gravitational wave event GW170817 ruled out many modified
gravity theories as alternative explanation to dark energy [1]. However, only a perfect knowledge of the
motion of the LIGO mirrors and/or of the interferometer response function due to new future detections
of gravitational waves will permit one to determine if general relativity is the definitive theory of gravity
or if it needs some weak modification. This will happen if the sensitivity of the current gravitational wave
interferometers and/or of advanced projects will improve in the future 2. This issue has been recently
clarified, for example, in [8].

In quintessence models of dark energy, the observed acceleration of the scale factor is caused by
the potential energy of a dynamical field, referred to as quintessence field. Quintessence differs from
the cosmological constant in that it can vary in space and time. In order for it not to clump and form
structure like matter, the field must be very light so that it has a large Compton wavelength. This class
of theories attempts to come up with an all-encompassing theory of both dark matter and dark energy as
a single phenomenon that modifies the laws of gravity at various scales. This could for example treat
dark energy and dark matter as different facets of the same unknown substance, a “dark fluid" [6], or
postulate that cold dark matter decays into dark energy.

The Newton-Schrödinger equation has had a long history since the 1950’s [18], [20]. It is the name
given to the system coupling the Schrödinger equation to the Poisson equation. In the case of a single
particle, this coupling is effected as follows: for the potential energy term in the Schrödinger equation take
the gravitational potential energy determined by the Poisson equation from a matter density proportional
to the probability density obtained from the wave-function. For a single particle of mass m the coupled
system of equations leads to the nonlinear and nonlocal Newton-Schrödinger integro-differential equation

ih̄
∂Ψ(r, t)
∂t

= − h̄2

2m∇
2Ψ(r, t) + V (r, t) Ψ(r, t) −

(
Gm2

∫
|Ψ(r′, t)|2

|r − r′|
d3r′

)
Ψ(r, t) (1.1)

Exact solutions to the stationary spherically symmetric Newton-Schrödinger equation were found in terms
of integrals involving generalized Gaussians [33]. The energy eigenvalues are also obtained in terms of
these integrals which agree with the numerical results in the literature.

Bohm’s quantum potential VQ = − h̄2

2m (∇2√ρ/√ρ) was shown to be proportional to the Weyl scalar
spatial curvature produced by an ensemble density of paths associated with one, and only one particle,
as shown in [25]. The constant of proportionality is − h̄2

2m . It can be generalized to the relativistic case.
This geometrization process of quantum mechanics allowed to derive the Schrödinger, Klein-Gordon [25]
and Dirac equations [29]. Most recently, a related geometrization of quantum mechanics was proposed
[32] that describes the time evolution of particles as geodesic lines in a curved space, whose curvature is
induced by the quantum potential. This formulation allows therefore the incorporation of all quantum
effects into the geometry of space-time, as it is the case for gravitation in the general relativity.

Based on these results we proposed in [33] the following novel 3 and nonlinear quantum-like Bohm-
Poisson equation for static solutions ρ = ρ(r)

∇2VQ = 4πGmρ ⇒ − h̄2

2m ∇
2 (
∇2√ρ
√
ρ

) = 4πGmρ (1.2)

such that one could replace the nonlinear Newton-Schrödinger equation for the above non-linear quantum-
like Bohm-Poisson equation (1.2) where the fundamental quantity is no longer the wave-function Ψ
(complex-valued in general) but the real-valued probability density ρ = Ψ∗Ψ . The logic behind eq-(1.2) is
based on the idea that the laws of physics should themselves determine the distribution of matter. This
is going one step further from General Relativity where a given distribution of matter determines the
geometry. Eq-(1.2) is based on Bohm’s quantum potential

VQ ≡ −
h̄2

2m
∇2√ρ
√
ρ

(1.3)

2 We thank the referee for pointing this out to us
3 To our knowledge eq-(1.2) proposed by us has not appeared before
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If, in addition to the Bohm-Poisson equation (1.2), one were to add the Schrödinger equation for the
complex-valued wave-function Ψ ≡ √ρeiS/h̄, one can obtain consistent solutions, which avoids having an
overdetermined system of equations, when the external potential is itself a function of ρ as we shall show
in section 2.1. Therefore in this work we will be focusing on the Bohm-Poisson-Schrödinger system of
equations instead of the Newton-Schrödinger equation (1.1).

This work is organized as follows. In section 2.1 we construct particular solutions to the Bohm-
Poisson-Schrödinger equation in the spherically symmetric case. Using these solutions, in 2.2 we show
how to obtain an exact expression for the currently observed (extremely small) vacuum energy density. In
section 3.1 we review the derivation of the Klein-Gordon equation based on the relativistic version of
Bohm’s potential, the Hamilton-Jacobi equation and continuity equation. In section 3.2 we posit the
novel Relativistic Bohm-Poisson equation within the context of a simple cosmological model involving a
real scalar field. Two specific solutions to the Relativistic Bohm-Poisson equation are provided encoding
the repulsive nature of dark energy and associated with the scalar field. One solution leads to an exact
cancellation of the cosmological constant, but an expanding decelerating cosmos; while the other solution
leads to an exponential accelerated cosmos consistent with a de Sitter phase, and whose extremely small
cosmological constant is Λ = 3

R2
H

, consistent with current observations. We conclude with some final
remarks about Weyl’s geometry.

2 The Vacuum Energy and Bohm-Poisson-Schrödinger Equation

2.1 The Bohm-Poisson-Schrödinger Equation

We may include the Schrödinger equation, in addition to the Bohm-Poisson equation (1.2), to find what
is the potential V which reproduces the positive definite probability density ρ = Ψ∗Ψ and which is related
to the matter density ρ̃m = mρ solution of the Bohm-Poisson equation (1.2).

It is straightforward to verify that a spherically symmetric solution to eq-(2) in a 3D spatially flat
background 4

− h̄2

2m ∇
2 (
∇2√ρm√

ρm
) = 4πGmρm, ∇2f(r) ≡ r−2∂r(r2∂rf(r)). (2.1)

is given by

ρm(r) = A

r4 , A = − h̄2

2πGm2 < 0 (2.2)

At first glance, since ρm(r) ≤ 0, one would be inclined to dismiss such solution as being unphysical.
However, one may notice that the Bohm-Poisson’s (BP) equation (2.1) is invariant under ρm → −ρm,
and G→ −G. Consequently −ρm ≥ 0 is a valid positive-definite solution to a BP equation associated to
a negative gravitational coupling −G < 0, and which is tantamount to repulsive gravity.

It remains to prove next that the external potential V (r) appearing in the spherically symmetric
Schrödinger equation is indeed repulsive. This does not mean, however, that V (r) will just be the
Newtonian potential with a change of sign. Because we have replaced the Newtonian potential for the
Bohm potential in the BP equation (2.1) one should not expect this trivial change of sign to happen.

As shown by David Bohm, the Schrödinger equation for the complex valued wave function Ψ ≡√
ρ(x, t) eiS(x,t)/h̄ is equivalent to the coupled pair of equations

− ∂S

∂t
= p2

2m + VQ + V = (∇S)2

2m − h̄2

2m
∇2√ρ
√
ρ

+ V (2.3a)

∂ρ

∂t
+ ∇(ρ∇S

m
) = 0 (2.3b)

The first equation is the Hamilton-Jacobi equation corresponding to an external potential V and including
Bohm’s quantum potential VQ; the second equation is the continuity equation. The momentum (not to be
confused with pressure) is p = ∇S. Inserting the positive-definite spherically symmetric static solutions
4 For the time being we shall not discuss solutions in curved backgrounds
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|ρm|/m = ρ = |A|/mr4 of the Bohm-Poisson equation into the above eqs-(2.3) it leads to a coupled system
of differential equations which determine the potential V (r) and the action (phase) S(r, t) = S(r)− Et.

After some lengthy but straightforward algebra, the solutions to the Bohm-Poisson-Schrödinger
equation in the spherically symmetric case are

ρ(r) = |ρm|
m

= |A|
mr4 = 1

2πGm3r4 , V (r) = E − (E − Vo) ( r
ro

)4 + h̄2

mr2 (2.4)

VQ = − h̄2

2m
∇2√ρ
√
ρ

= − h̄2

mr2 (2.5)

S(r, t) = S(r) − E t, S(r) =
√

2m(E − Vo)
r3

3r2
o

+ So, E > Vo (2.6)

One can verify that the spherically symmetric wave function Ψ(r, t) ≡
√
ρ(r) eiS(r,t)/h̄ built from the

expressions in eqs-(2.4-2.6) is a stationary solution of the Schrödinger equation

ih̄ (∂Ψ(r, t)
∂t

) = − h̄2

2m
1
r2 ∂r(r2∂rΨ(r, t)) + V (r) Ψ(r, t) (2.7)

with
Ψ(r, t) ≡

√
ρ(r) eiS(r,t)/h̄ = (

√
ρ(r) eiS(r)/h̄) e−iEt/h̄ = Ψ(r) e−iEt/h̄ (2.8)

As expected, the external potential V (r) cannot be arbitrary but is itself determined in terms of ρ. It
can be rewritten as

V (ρ(r)) = co + c1
ρ(r) + c2

√
ρ(r) (2.9)

where co, c1, c2 are numerical coefficients given in terms of E, Vo, ro. By inspection of eq-(2.4) we can see
that such potential leads to a repulsive force F = −∇V > 0, for r > 0, when E > Vo. Therefore, the
Bohm-Poisson-Schrödinger equation admits solutions encoding a repulsive gravity consistent with having
replaced G for −G. In the next section we shall find cosmological solutions mimicking dark energy.

The explicit presence of h̄2 in the expression for the external potential V (r) in eq-(2.4) is not very
common in the Quantum Mechanical problems that we are familiar with. However, as emphasized by
Klauder in his monograph [34], the principal purpose of the Enhanced Quantization program is to describe
and apply a new way to quantize classical systems, which in turn, lead to classical enhanced Hamiltonians
that explicitly contain nonvanishing h̄ terms. A typical example of this is the introduction of Bohm’s
quantum potential into the classical Hamilton-Jacobi equations. This was the reason why a h̄-dependent
term appears in the external potential V (r).

2.2 The Vacuum Energy Density

In the previous subsection we exploited the fact that the Bohm-Poisson’s (BP) equation is invariant under
ρm → −ρm, and G → −G, and such that −ρm ≥ 0 is a positive-definite solution to the BP equation
associated to a negative gravitational coupling −G < 0, and which is tantamount to repulsive gravity.

In this subsection we shall explore another possibility which does not rely in changing signs but instead
in adding the vacuum energy density contribution ρo to the negative-definite density solution (2.2) of the
BP equation ρm, and leading to a large region where ρ+ ρo ≥ 0.

Despite that the BP equation is nonrelativistic we can still borrow this line of reasoning (adding a
constant ρo to ρ) by noticing that the Einstein field equations (in spherical coordinates), when the stress
energy tensor has the diagonal form, 5

Tµν = ( −gtt ρ, grr p(r), gθθ p(θ), gφφ p(φ) ) (2.10)
5 A perfect fluid in thermodynamic equilibrium in Minkowski space, for example, has in Cartesian coordinates
and signature (−,+,+,+) the following stress energy tensor Tµν = (ρ, p, p, p), T νµ = (−ρ, p, p, p)
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are given by

Rtt −
1
2 gtt R + Λ gtt = − 8πG gtt ρ (2.11a)

Rrr −
1
2 grr R + Λ grr = 8πG grr p(r), . . . (2.11b)

in this case one can absorb the cosmological constant into a redefinition of ρ, by simply rewriting

ρ̃ ≡ ρ + Λ

8πG = ρ + ρo (2.12)

leading then to field equation without the cosmological constant, but rewritten in terms of ρ̃ as follows

Rtt −
1
2 gtt R = − 8πG gtt ρ̃ (2.13a)

Similarly one can do the same with the other components of the field equations by absorbing the
cosmological constant into a redefinition of p(r), · · · , by simply rewriting

p̃(r) ≡ p(r) −
Λ

8πG = p(r) − ρo, . . . (2.13b)

from eqs-(2.12, 2.13b) one infers that

ρ̃ + p̃(r) = ρ + p(r), ρ̃ + p̃(θ) = ρ + p(θ), . . . (2.13c)

In the case of an isotropic fluid p = p(r) = p(θ) = p(φ), the dark energy equation of state ρ̃+ p̃ = ρ+ p = 0
remains invariant.

Therefore, borrowing this shifting procedure from the relativistic Einstein field equations to the
nonrelativistic case, it gives the following expression for ρ̃ in terms of the above solution (2.2) ρm of the
nonrelativistic BP equation

ρ̃ = ρm + ρo = A

r4 + ρ0, A = − h̄2

2πGm2 (2.14)

and consequently, when Λ > 0, one can now concentrate on the domain of values of r where ρ̃(r) > 0.
And, in doing so, it will permit us to show that the value of ρ0 can be made to coincide exactly with the
(extremely small) observed vacuum energy density, by simply introducing an ultraviolet length scale l
that is very close to the Planck scale, and infrared length scale L equal to Hubble scale RH .

A rigorous procedure would require a covariant (relativistic) extension of the BP equation. For
signature (−,+,+,+), it may be defined in terms of the D’Alambertian operator, and a proper mass
density Ω(r, t) of physical dimensions (length)−5, such that m =

∫
Ω(r, t)

√
|g| d4x, as follows

− 2

(
2
√
Ω(r, t)√
Ω(r, t)

)
= 4πGm Ω(r, t), 2 ≡ 1√

|g|
∂µ(
√
|g| gµν ∂ν), h̄ = c = 1 (2.15)

However, for the sake of the arguments and the discussion that follows we shall go ahead and proceed
with eq-(2.14). Another relativistic (field theory) extension of the BP equations will be the subject of the
next section.

Focusing for now on the static spherically symmetric solutions (2.2) of the BP equation, let us choose
the ultraviolet scale l to coincide with the node (zero) of ρ̃(r) given by eq-(2.14) such that

ρ̃(r = l) = − h̄2

2πGm2
1
l4

+ ρo = 0 ⇒ ρo = h̄2

2πGm2
1
l4

(2.16)

The domain of physical values of r must be r ≥ l in order to ensure a positive-definite density ρ̃(r) ≥ 0.
One could include all the values of r from 0 to ∞. The density diverges at r = 0, while the integral∫∞

0 ρ̃(r)4πr2dr =∞−∞. The +∞ contribution stems from the region r ≥ l, while the −∞ contribution
stems from the region r < l. Therefore one needs to introduce a suitable and judicious regularization
involving an ultraviolet and infrared scale.
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In natural units of h̄ = c = 1, after introducing the ultraviolet scale l and infrared scale L = RH in
the normalization condition (otherwise the mass would diverge) it yields the integral

m =
∫ RH

l

ρ̃(r) 4πr2 dr =
∫ RH

l

(A
r4 + ρ0) 4πr2 dr =

∫ RH

l

(
− 1

2πGm2
1
r4 + ρ0

)
4πr2 dr (2.17)

In conventional QM, the plane wave solutions Ψ = eik.r are not square integrable. Nevertheless we bypass
this problem after introducing an infrared cutoff by putting the free particle in a box of finite volume.
Similarly, we follow this regularization procedure in eq-(2.17). Upon performing the integral in eq-(2.17),
and plugging in the value of ρ0 derived from eq-(2.16), with the provision that when RH >> l the
dominant contribution to the integral stems solely from ρo, one ends up with the following relationship

4πR3
H

3 ρo = 4πR3
H

3
1

2πGm2l4
= m ⇒ m3 = 2

3
R3
H

Gl4
(2.18)

solving for m one gets

m = ( 2
3Gl4 )1/3 RH (2.19)

One can verify that when the ultraviolet scale l is chosen to be very close to the Planck scale, and given
by

l4 = 4
3 L4

P ⇒ l = (4
3)1/4 Lp = 1.0745 Lp (2.20)

then upon inserting the values for m and l obtained in eqs-(2.19,2.20) into the expression for ρo derived
in eq-(2.16), after setting L2

p = 2G, 6 it gives in natural units of h̄ = c = 1

ρo = 1
2πGm2

1
l4

= 1
2πG (3 G l4

2 )2/3 1
R2
H l4

= 3
8πG

L4
p

R2
H L4

p

= 3
8πGR2

H

(2.21)

which is precisely equal to the observed vacuum energy density ρ = (Λ/8πG) associated with a cosmological
constant Λ = (3/R2

H) and corresponding to a de Sitter expanding universe whose throat size is the Hubble
radius RH ( = c/Ho, Ho is today’s value of the Hubble parameter).

The physical reason behind the choice of the ultraviolet scale l in eq-(2.20) is based on re-interpreting
ρo as the uniform energy (mass) density inside a black hole region of Schwarzschild radius R = 2Gm

ρbh = m

(4π/3)R3 = 3
8πGR2 , L2

P = 2G, h̄ = c = 1 (2.22)

In the regime R = 2Gm >> l, when the dominant contribution to the integral (2.17) stems from the
ρo term, we may equate the expression for ρo in eq-(2.16) to ρbh in eq-(2.22) giving

1
2πGm2l4

= 1
2πl4

(2G)2

GR2 = 1
2πl4

L4
p

GR2 = 3
8πGR2 ⇒ l = (4

3)1/4 Lp, h̄ = c = 1 (2.23)

and leading once again to the value of l = 1.0745Lp in eq-(2.20). Therefore, when R = 2Gm >> l, the
value of l is always very close to the Planck scale, and independent of R = 2Gm, because the scale R
has decoupled in eq-(2.23).

In this way, one can effectively view the observable universe as a “black-hole” whose Hubble radius
RH encloses a mass MU given by 2GMU = RH . From eq-(2.22) it follows that when R = RH , the black
hole density ρbh = ρo = ρobs coincides with the observed vacuum energy density. It is well known that
inside the black hole horizon region the roles of t and r are exchanged due to the switch in the signature
of the gtt, grr metric components. Cosmological solutions based on this t↔ r exchange were provided by
the Kantowski-Sachs metric. For references on Black-Hole Cosmology see [21].
6 Some authors absorb the factor of 2 inside the definition of Lp, we define the Planck scale such that the
Compton wavelength coincides with the Schwarzschild radius
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To conclude this section, our interpretation of these results of being able to express the vacuum energy
density ρo in terms of an ultraviolet (Planck) and infrared scale (Hubble scale) stems from the inherent
non-locality of Bohm’s formulation of QM. Such non-locality is reflected in this ultraviolet/infrared
entanglement. For another perspective of this small/large scale entanglement within the context of Scale
Relativiy Theory see [50].

3 Dark Energy and the Relativistic Bohm-Poisson Equation

3.1 Derivation of the Klein-Gordon Equation

The relativistic version of the Bohm potential for a scalar field is [25], [29]

VQ = h̄2 2(
√
φ∗(r, t)φ(r, t))√
φ∗(r, t)φ(r, t)

(3.1)

Note that VQ has now physical units of (mass)2 instead of mass. Given the signature (+,−,−,−) the
relativistic analog of the Hamilton-Jacobi equation eq-(2.3a) is

(∂µS)2 = m2 + VQ = m2 + h̄2 2(
√
φ∗(r, t)φ(r, t))√
φ∗(r, t)φ(r, t)

(3.2)

the four-current is

Jµ = i ( φ∗(r, t) ∂µφ(r, t) − φ(r, t) ∂µφ∗(r, t) ) (3.3)

and obeys the conservation law (continuity equation)

∂µJ
µ = 0 (3.4)

related to the conservation of a Noether charge Q =
∫
JµdΣ

µ that is given by the flux of the current Jµ
through a spatial 3-surface Σµ. Q counts the number of scalar particles minus the number of anti-particles
flowing through the 3-spatial surface. In QFT (relativistic QM) the scalar field φ is no longer a wave
function, hence it is not related to a probability amplitude as such.

Writing the complex scalar field in the polar form

φ ≡ ||φ(r, t)|| eiS(r,t)/h̄ =
√
φ∗(r, t)φ(r, t) eiS(r,t)/h̄ (3.5)

allows to solve for S = − ih̄2 ln( φφ∗ ). Then a lengthy but straightforward algebra leads to the Klein-Gordon
equation 7

(h̄2
2 + m2) φ(r, t) = 0, (h̄2

2 + m2) φ∗(r, t) = 0 (3.6)

It was noticed long ago by [25] that the relativistic version of Bohm’s potential VQ (3.1) is proportional
to the Weyl scalar curvature RW in flat spacetime backgrounds when Weyl’s gauge field of dilatations is
Aµ ∼ ∂µln(φ∗φ). Because Aµ is pure gauge (total derivative) the Weyl’s field strength Fµν = ∂µAν −
∂νAµ = 0, which implies that the rate of the ticking of clocks will be independent of their paths taken
from point A to B. Consequently, atomic clocks arriving on earth via different trajectories will tick at the
same rate (same spectral lines). In this fashion one can avoid Einstein’s criticism of Weyl’s gravity.

A conformally covariant equation8 equation in curved backgrounds in 4D with a curvature scalar
coupling, can also be obtained via Bohm’s quantum potential [25], [29]

(h̄2 gµνDµDν + m2 + RW
6 ) φ(r, t) = (h̄2 gµν∇µ∇ν + m2 + R

6 ) φ(r, t) = 0 (3.7)

where Dµ = ∇µ + Aµ is the Weyl covariant derivative and RW is the Weyl scalar curvature. The
“conformal" mass m parameter is posited to scale under Weyl scalings with a Weyl weight of −1. The

7 Using a different signature (−,+,+,+) requires changing the signs in the right hand side of (3.2) and it leads
to the Klein-Goldon equation with a sign change in the m2 term

8 The homogeneous differential equation is also conformally invariant
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weight of gµν and RW is −2, while the weight of φ is −1. Due to key factor of 1
6 (that varies with the

spacetime dimension) in the Weyl scalar curvature RW , the field Aµ decouples entirely from the left hand
side of the equation leading to the right hand side expressed solely in terms of the Riemannian scalar
curvature R and covariant derivatives ∇µ based on the Christoffel connection.

A Weyl-gauge invariant proof of the spin-statistics theorem, and solving the Quantum nonlocality
enigma by Weyl’s Conformal Geometry can be found in more recent work by [27]. The coupling to the
Electromagnetic field via the prescription pµ → pµ − eAµ leads to a modified Klein-Gordon equation by
simply replacing 2 with (∂µ − ieAµ)(∂µ − ieAµ).

To conlude this brief review of the Klein-Gordon equation, one should add that the deep question
of whether or not Bohmian mechanics can be be made relativistic was studied in [31]. In relativistic
space-time, Bohmian theories can be formulated by introducing a privileged foliation of space-time.
The introduction of such a foliation - as extra absolute space-time structure - would seem to imply a
clear violation of Lorentz invariance, and thus a conflict with fundamental relativity. The authors [31]
considered the possibility that, instead of positing it as extra structure, the required foliation could be
covariantly determined by the wave function. This allowed for the formulation of Bohmian theories that
seem to qualify as fundamentally Lorentz invariant. They concluded with some discussion of whether or
not they might also qualify as fundamentally relativistic.

3.2 Dynamical Dark Energy and the Relativistic Bohm-Poisson Equation

Having reviewed briefly how to derive the Klein-Gordon equation based on the relativistic version
of Bohm’s potential we proceed with the cosmological applications. Given the Lorentzian signature
(−,+,+,+), let us begin with the action in a curved background with a cosmological constant

S =
∫

d4x
√
−g

(
(R − 2Λ)

16πG − gµν

2 (∂µφ) (∂νφ) − V (φ)
)

(3.8)

and associated with a canonical real scalar field φ with a potential V (φ). The FLRW metric is

ds2 = −(dt)2 + a2(t)
(

(dr)2

1− kr2 + r2 (dΩ)2
)
, k = 1, 0;−1 (3.9)

k is the spatial scalar curvature parameter with units of (length)−2. More precisely, k → k
l2 , where the

scale l has been set to unity.
Inserting this metric into the Einstein field equations yield in c = 1 units

a−2 (da
dt

)2 + k

a2 −
Λ

3 = 8πG
3 ρ (3.10a)

2 a−1 (d
2a

dt2
) + a−2 (da

dt
)2 + k

a2 − Λ = − 8πG p (3.10b)

From now one we shall abbreviate the temporal derivatives by ∂ta = ȧ; ∂2
t a = ä, · · · when appropriate.

The latter pair of equations is equivalent to the following pair of equations

ρ̇ = −3 ȧ
a

(ρ + p) (3.11a)

ä

a
= − 4πG

3 (ρ + 3p) + Λ

3 (3.11b)

Eq-(3.11a) is just the local energy-momentum conservation law ∇µTµν = 0 [49], and eq-(3.11b) reflects
the fact that a positive density and pressure cause a deceleration, while a positive Λ causes an acceleration
in the expansion of the universe.

One must supplement eqs-(3.10) (or eqs-(3.11)) with the equations of motion for the φ field2φ(xµ) = dV (φ)
dφ .

In the special case φ = φ(t), it becomes

− a−3(t) ∂t ( a3(t) ∂tφ(t) ) = dV (φ)
dφ

(3.12)
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The real scalar field φ = φ(t) is assumed to behave as a perfect fluid whose density and pressure are [4]

ρ = 1
2 (dφ

dt
)2 + V (φ), p = 1

2 (dφ
dt

)2 − V (φ) (3.13)

Because eq-(3.11a) is just the local energy-momentum conservation law ∇µTµν = 0 which is satisfied
for all potentials V (φ), the system of 3 equations (3.11, 3.11b, 3.12) is not sufficient to determine the
potential V (φ). Thus one must specify a priori the expression for the potential. When the cosmological
constant is set to zero Λ = 0, by suitably choosing the potential, it is still possible to reproduce the
cosmic expansion at late times. There is a plethora of different models which are possible for different
potentials. For example, one potential is the Ratras-Peeble potential V (φ) = M4+nφ−n, with n > 0 [4].
Another potential is the Starobinksy potential V = Λ4(1− e−αφ)2 [5], with α = (

√
2
3/MP ), MP is the

Planck mass.
The difference now is that we shall not set Λ to zero, and we shall also derive the functional form

of the potential function V (φ) by adding the relativistic analog of the Bohm-Poisson equation, instead of
being an a priori suitably chosen function. Previously we showed how to derive the form of the repulsive
potential V (r) from the solutions to the Bohm-Poisson-Schrödinger equation. We are going to follow a
similar procedure for the relativistic case.

To simplify matters, let us take a real-valued field φ = φ∗. The relativistic, field theory analog of
the Bohm-Poisson equation in D dimensions, that we propose in this work is defined by the following
equation

( h̄
m

)2 2

(
2φ(r, t)
φ(r, t)

)
= 4πG gµν Tµν , 2 ≡ 1√

|g|
∂µ(
√
|g| gµν ∂ν), c = 1 (3.14)

where the trace of the stress energy tensor T = gµνTµν appears in the right hand side. Both sides of
eq-(3.14) are scalars as they should. The gravitational coupling constant in D-dimensions is related to the
Planck scale in D-dimensions by GD ∼ LD−2

P . Eq-(3.14) has the same physical units as the cosmological
constant Λ.

In passing we should mention that of the many articles surveyed in the literature pertaining the role
of Bohm’s quantum potential and cosmology, [36], [43], [44] we did not find any related to the novel
Bohm-Poisson equation proposed in this work.9. The authors [43], for instance, have shown that replacing
classical geodesics with quantal (Bohmian) trajectories gives rise to a quantum corrected Raychaudhuri
equation (QRE). They derived the second order Friedmann equations from the QRE, and showed that this
also contains a couple of quantum correction terms, the first of which can be interpreted as cosmological
constant (and gives a correct estimate of its observed value), while the second as a radiation term in the
early universe, which gets rid of the big-bang singularity and predicts an infinite age of our universe. The
model of “dark energy without dark energy" based on the sub-quantum potential associated with the
CMB particles by [47] also differs from the work presented here.

From eqs-(3.13) one obtains the trace of the stress energy tensor T

T = − ρ + 3p = (φ̇)2 − 4V (φ) =

− 3
8πG

(
( ȧ
a

)2 + k

a2 −
Λ

3

)
− 3

8πG

(
2 ( ä

a
) + ( ȧ

a
)2 + k

a2 − Λ

)
(3.15)

Inserting T into eq-(3.14) actually leads to two separate equations

( h̄
m

)2 2

(
2φ(r, t)
φ(r, t)

)
= 4πG

(
(φ̇)2 − 4V (φ)

)
(3.16)

and
( h̄
m

)2 2

(
2φ(r, t)
φ(r, t)

)
= − 3

(
ä

a
+ ( ȧ

a
)2 + k

a2 −
2Λ
3

)
(3.17)

9 A Google Scholar search provided the response “Bohm-Poisson equation and cosmological constant did not
match any articles"
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For complex-valued fields, one simply replaces φ for
√
φ∗φ in the left hand side of (3.14), whereas for

the right hand side one must evaluate the stress energy tensor, and its trace corresponding to complex
scalar fields. To simplify matters we shall focus on real-valued scalar fields. As usual, one must supplement
eqs-(3.16, 3.17) with the equations of motion for the scalar φ field. When φ = φ(t), it becomes

2φ(t) = − a−3(t) ∂t ( a3(t) ∂tφ(t) ) = dV (φ)
dφ

(3.18)

To sum up, one has a coupled system of 3 differential equations (3.16, 3.17, 3.18 ) to solve for a(t), φ(t),
and V (φ). Things simplify considerably in the massless case m = 0. Because then one may bring the m
factor into the right-hand side of eqs-(3.16,3.17), and then set m = 0, leading now to one single equation

m = 0 ⇒ 2

(
2φ(r, t)
φ(r, t)

)
= a−3(t) ∂t

(
a3(t) ∂t [ a−3(t) φ−1(t) ∂t ( a3(t) ∂tφ(t) ) ]

)
= 0 (3.19)

Note that despite we set m = 0 this does not force the trace T to be zero because the action (3.8) is not
conformally invariant. In this massless case, one must still include eq-(3.15), which in conjunction with
eqs-(3.18, 3.19), furnishes a simpler coupled system of 3 differential equations to solve for a(t), φ(t), and
V (φ).

We are going to find a simple, but not trivial solution, to eqs-(3.15, 3.18, 3.19) when the spatial
curvature parameter k = 0. A solution can simply be found by requiring

2φ(t) = − a−3(t) ∂t ( a3(t) ∂tφ(t) ) = − (3 H φ̇ + φ̈) = dV (φ)
dφ

= 0 (3.20)

where the Hubble function is defined by H(t) ≡ ȧ
a .

After some lengthy but straightforward algebra, one finds that the solutions to eqs-(3.18, 3.19, 3.20)
are

φ(t) = 1
2
√

3πG
ln( t

to
), a(t) = ao ( t

to
) 1

3 (3.21a)

H(t) = 1
3 t−1, V = Vo = − Λ

8πG (3.21b)

ρ(t) = 1
24πG (t−2 − 3Λ), p(t) = 1

24πG (t−2 + 3Λ) (3.21c)

The upshot of these solutions (3.21) obtained when m = k = 0, is :
(i) At late times, t→∞, ρ = −p = − Λ

8πG which corresponds to the dark energy equation of state.
Choosing the sign of Λ to be Λ < 0 yields ρ > 0 and p < 0 (negative pressure).

(ii) If one sets to to coincide with the present value of the Hubble time tH = (Ho)−1 (equal to RH in
c = 1 units), at the present time t = to, the value of the scalar field φ vanishes but not its derivative
φ̇(t = tH) = t−1

H

2
√

3πG . Because the logarithmic function has a slow growth, despite that the values of the
scalar field will remain very small (almost vanishing) for times t ∼ tH , there is a non-vanishing energy
density permeating all of space. For instance, the present day value of the kinetic energy density 1

2 (φ̇)2 is
1

24πGR2
H

, and which is quite close to the observed vacuum energy density 3
8πGR2

H

.
(iii) Inserting the constant value of the potential V = Vo = − Λ

8πG back into the classical action (3.8)
it will cancel exactly the cosmological constant term, irrespective of the value and sign of Λ. If one
wishes to identify Λ

8πG with the enormous vacuum energy density due to the zero-point fluctuations of the
fields associated with the Standard Model, it will be cancelled exactly by the Vo contribution in the action
(3.8). Therefore, the relativistic Bohm-Poisson equation associated with the massless real scalar field,
when the spatial curvature parameter is chosen to be k = 0, provides a natural and simple mechanism to
cancel the cosmological constant in the action (3.8) without invoking supersymmetry. A QFT with no
zero-point energy has been recently advanced by [35].

There is a caveat because, rigorously speaking, one would have to include the contribution of the
Standard Model fields into the action in order to study the dynamics of all the fields. In turn, this would
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affect the functional form of the new solutions, and an exact cancellation of Λ might no longer occur.
Nevertheless it is encouraging that a simple action like (3.8) permits an exact cancellation of Λ.

(iv) In the m = 0 case, h̄ decouples from all the equations giving a “classical" appearance (flavor)
to all the equations. However eq-(3.19) is intrinsically Quantum Mechanical because it is based on the
relativistic version of Bohm’s Quantum potential. When m 6= 0, h̄ will no longer decouple from the
solutions to the equations.

(v) The scaling factor a(t) (3.21) obeys ȧ > 0, and ä < 0, hence it corresponds to an expanding, but
decelerating, universe. Inserting the solutions (3.21) one can verify that the Λ terms cancel out exactly in
eq-(3.11b) yielding a decelerating cosmos ä

a = − 2
9 t
−2 < 0.

(vi) The scalar spacetime curvature associated with the scaling factor a(t) = ao ( tto ) 1
3 , when k = 0, is

R = 6
(
ä

a
+ ( ȧ

a
)2
)

= − 2
3 t−2 (3.22)

and it asymptotically vanishes as t→∞. Similarly, the kinetic terms in the action (3.8) vanish in that
limit. One may also notice that the action (3.28) vanishes on-shell for all values of t (since gtt = −1).
The magnitude of R at the present-day value of the Hubble time (Hubble scale) tH = RH is |R| = 2

3R2
H

which is quite close to the (extremely small) observed value of Λ = 3
R2
H

.

(vii) R and φ blow up at t = 0, consistent with the Big-Bang singularity.
(viii) When k = 0, one may verify by simple inspection that the solutions to eqs-(3.15, 3.18, 3.19),

given by eqs-(3.21a, 3.21b, 3.21c), also solve eqs-(3.10a, 3.10b, 3.18). This is a sign of consistency.
Finally, we proceed to find other solutions which correspond to an exponentially expanding cosmos

like de Sitter space. Upon inserting the ansatz a = eHot into eqs-(3.15, 3.18, 3.19), and solving for the
function Θ ≡ 2φ(t)

φ(t) which obeys eq-(3.19) 2Θ = 0, gives

Θ ≡ 2φ(t)
φ

= A e−3Hot, A 6= 0 (3.23)

which in turn yields the following set of equations

φ̈ − 2A e−3Hot φ = 0 (3.24)

3Ho φ̇ + 3
2 φ̈ = 0 (3.25)

(φ̇)2 − 4V = − 3
2πG ( H2

o −
Λ

3 ) (3.26)

after using

Θ ≡ 2φ(t)
φ(t) = φ−1 dV

dφ
= φ−1 V̇

φ̇
= 1

2
φ̈

φ
= A e−3Hot (3.27)

and obtained from differentiating eq-(3.26). There are no nontrivial solutions to the pair of equations
(3.24, 3.25). The solutions to (3.24) are given in terms of Bessel functions; whereas the solutions to (3.25)
are given in terms of simple exponentials. Therefore the solutions to eqs-(3.24, 3.25, 3.26) are

φ(t) = 0, V = Vo = 3
8πG ( H2

o −
Λ

3 ) (3.28)

Plugging Vo back into the classical action (3.8) leads to an exact cancellation of Λ, irrespective of its
value and sign, leaving only the remaining term − 3H2

o

8πG , and which coincides with the contribution of the
vacuum energy density (critical energy density). There is no problem with the minus sign in front, because
it will be offset by another minus sign in the definition of the stress energy tensor Tµν = − 2√

|g|
δ(
√
|g|Lm)
δgµν

giving a positive value in the right hand side of the field equations.
Whereas, if Vo in eq-(3.28) is set to zero Vo = 0 ⇒ Λ = 3H2

o = 3
R2
H

, it then yields the observed
extremely small value of the cosmological constant. Either way, whether or not we set Vo to zero, leads to
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the same value of the vacuum energy density. To sum up, in this case the classical action (3.8) reduces
to a pure gravitational action with a very small cosmological constant Λ = 3

R2
H

corresponding to an
exponential expanding cosmos in a de Sitter phase, as it is currently observed.

Let us compare the solutions (3.28) (when a(t) = eHot) with the solutions to the 3 equations (3.10a,
3.10b, 3.12) when a(t) = eHot, and k = 0. These solutions are φ = φo = constant and Vo = 3

8πG (H2
o − Λ

3 ).
By choosing φo = 0 one then recovers the solutions (3.28) once again. This is a sign of consistency.

In the most general case, in 4D there are 10 Einstein field equations for the 10 independent metric
components gµν . There is one equation of motion 2φ = dV

dφ for the φ(xµ) field giving 11 equations for
a total of 12 unknown functions {gµν , φ, V (φ)}. Adding the relativistic Bohm-equation (3.14) will then
bring the total number of equations to 12 which matches now the number of 12 unknown functions.

There are myriads of other solutions for the m = 0, k = 0 case. Also when k 6= 0, and/or m 6= 0. Given
k = 1, 0,−1, and m = 0,m 6= 0, there are 6 cases to consider within the FLRW metrics, and each one of
them provides many different families of solutions. The solutions in the most general case are not easy to
obtain. The main result of this work is that we have been able to find solutions in two cases with clear
physical relevance in Cosmology. In particular, the second solution yields the very small value 3

R2
H

of Λ
when Vo = 0.

To conclude, in the most general case, the relativistic Bohm-Poisson equation is a prescription to
solve (determine) the potential V (φ) in a system of 12 coupled nonlinear partial differential equations
corresponding to 12 functions {gµν ;φ;V (φ)} in four dimensions. It can be generalized to other dimensions
as well. This method relies on the co-existence of the classical and quantum world (see also [34]) since
it combines classical equations with the relativistic Bohm-Poisson equation (quantum like), like the
Newton-Schrödinger equation which involves a combination of both classical (Newton) and quantum
(Schrödinger) equations.

One can extend the action (3.8) to one involving conformal gravity based on Weyl’s geometry. The
results in [25] led to a key relationship between the Weyl gauge field Aµ and the scalar φ of the form

Dµφ = 0 ⇒ Aµ ∼ − ∂µ ln( φ
φo

) ⇒ φ ∼ φo e
−
∫
Aµ dxµ (3.29)

where Dµ is the Weyl covariant derivative. Therefore, the Weyl-covariantly-constant scalar field φ (which
is a source of dark energy) can be identified with minus the exponential of the line integral10 of the Weyl
gauge field Aµ of dilatations. Since Aµ is pure gauge, locally it can be gauged to zero, but not globally
since there may be topological obstructions in doing so. For this reason it is warranted to explore what
role non-trivial topologies might play in Cosmology. If Aµ can be gauged to zero globally, then the scalar
φ = φo can be set (gauged) to a constant.

A more recent proposal that advocates the fall of dark matter may be found in [17]. Scale invariance
is assumed in the empty regions of space. The Weyl gauge field Aµ contributes to modifications of the
Christoffel connection leading then to repulsive corrections to the geodesic equations. Another approach
to solve these cosmological puzzles based on the scaling properties of fractals can be found in Nottale’s
Scale Relativiy Theory [50]. Conformal gravity has also been proposed as a solution of the problems
with dark matter and dark energy by [15]. The role of Weyl geometry warrants further investigation.
Another project that needs to be studied is the issue of instabilities. Because the Relativistic Bohm
Poisson equation has higher derivatives than two this question has to be studied further.

Acknowledgments. We are indebted to M. Bowers for assistance; to J.F. Gonzales for the reference
about the work of [47], and to the referee for bringing to our attention the work in [8].
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