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Abstract We discuss the wormholes associated with the four-dimensional Schwarzschild (S4),
Schwarzschild anti De Sitter (SaDS4), and Reissner-Nördstrom (RN4) black holes, in Schwarzschild,
isotropic and Kruskal-Szekeres cordinates. The first two coordinate systems are valid outside the
horizons, while the third one is used for the interiors. In Schwarzschild coordinates, embedding for
SaDS4 exists only for a finite interval of the radial coordinate r, and similar restrictions exist for
RN4. The use of the K-S coordinates allows us to give an explicit proof of the pinching-off of the
bridges, making them non-traversable. The case of the extreme Reissner-Nördstrom (ERN4) is also
discussed.
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1 Introduction

In the context of black hole theory, for each value of the Schwarzshild time t ∈ (−∞,+∞) or each
spacelike slice in a Kruskal-Szekeres (K-S) diagram with slope between -1 and +1 [1,2], there exists a
hypersurface which connects the causally disconnected exterior regions, asymptotically flat in the cases
e.g. of Schwarzschild (S) and Reissner-Nördstrom (RN) black holes (BH ′S), or asymptotically anti De
Sitter (aDS) or De Sitter (DS) in the cases of (SaDS) or (SDS) BH ′s. (We consider the universal cover
of aDS which makes it, and to SaDS, free of closed causal curves.) This hypersurface, which in the
case of 4-dimensional spacetime and spherical symmetry we can imagine as a 2-dimensional surface by
choosing the polar angle θ at the equatorial plane (θ = π/2) is called wormhole [3] or Einstein-Rosen
bridge [4]. Typically these bridges are non traversable, that is, no kind of particle (massive or massless)
can pass through them from one exterior region to the other exterior region, because inside the future
and past horizons -where Schwarzschild coordinates do not hold and must be replaced by another set of
coordinates, say K-S coordinates- a process of pinching-off of the wormhole occurs that forbiddes the
passing of the particles and so it is responsible of the non traversability. For the S wormhole this was first
proved by Fuller and Wheeler [5]; a qualitative description can be found in Carroll [6], and a detailed
description of the embedding in E3 and time evolution was recently exhibited by Collas and Klein [7].
The appearance of wormholes in black holes led to the proposal of their existence outside this context, as
solutions of the Einstein’s equations in the presence of matter satisfying non standard energy conditions,
and being traversable [8]. For a general introduction and developement of the subject see Visser [9]. A
more recent review of these developements can be found in Lobo [10].

In the present paper we describe in detail, through the use of K-S coordinates, the pinching-off
process and consequent non traversability of the wormholes associated with the 4-dimensional spherically
symmetric Schwarzschild anti De Sitter (SaDS4) (subsection 4.1), Reissner-Nördstrom (RN4) (subsection
4.2), and extremal Reissner-Nördstrom (ERN4) (subsection 4.3) black holes. Since both SaDS4 and RN4
minus (IV ∪ IV ′) (see Figs. 9.a,b) do not contain closed causal curves (the 2nd. spacetime is globally
hyperbolic [11]), one expects the corresponding wormholes to be non traversable to avoid the possibility
of time travel through them. Section 2 is devoted to the description of the wormholes in Schwarzschild
coordinates, while section 3 and its subsections does the same in isotropic coordinates. In these two cases

Theoretical Physics, Vol. 4, No. 4, December 2019 
https://dx.doi.org/10.22606/tp.2019.44001 133

Copyright © 2019 Isaac Scientific Publishing TP



the coordinates only cover the exterior regions i.e. outside the event horizons. In section 5 we briefly
comment on recent developements on eternal traversable wormholes.

Note. We use metrics with signature (+,−,−,−), and the natural system of units G = c = 1.

2 Schwarzschild Coordinates: Embeddings in E3

In this section we discuss the embeddings in E3 of the wormholes or Einstein-Rosen (ER) bridges
associated with the spherical symmetric Schwarzschild (S4), Schwarzschild anti De Sitter (SaDS4), and
Reissner-Nördstrom (RN4) black holes (BH’s), in terms of Schwarschild coordinates (t, r, θ, ϕ). These
coordinates cover the exterior regions i.e. outside the event horizons,

rh = 2M (1)

for S4,

rh = (Ma2)1/3
((

1 +
√

1 + a2/27M2
)1/3

+
(

1−
√

1 + a2/27M2
)1/3

)
(2)

for SaDS4, and
r+ = M(1 +

√
1− (Q/M)2) (3)

for RN4, where M is the mass of the BH, a =
√

3
−Λ is the curvature radius associated with the cosmological

constant Λ < 0, and Q2 = p2 + q2 > M2 is the sum of the squares of electric and (hypotetical) magnetic
charges. Clearly, rh → 2M as a→ +∞ i.e. as Λ→ 0−, and r+ → 2M as Q2 → 0+.

2.1 S4

The metric is
ds2
S4

= (1− 2M/r) dt2 − dr2

1− 2M/r
− r2dΩ2

2 , r > 2M, (4)

with dΩ2
2 = dθ2 + sin2θdϕ2.

For constant t = t0 and θ = π/2, the remaining 2-dimensional metric is

ds2
S4
|t0,π/2 = −

(
dr2

1− 2M/r
+ r2dϕ2

)
. (5)

The Euclidean metric in R3 in cylindrical coordinates (r, ϕ, z) is

dl2E = dr2 + r2ϕ2 + dz2 =
((

dz

dr

)2
+ 1
)
dr2 + r2dϕ2, (6)

where the last equality defines a 2-dimensional surface z(r). Identifying −ds2
S4
|t0,π/2 with dl2E we obtain

(dzdr )2 + 1 = 1
1−2M/r which leads to

z = ±
√

2M
∫ r

0

dr′√
r′ − 2M

= ±2
√

2M
√
r − 2M, (7)

i.e.
r = r(z) = 2M + z2

8M . (8)

So, r(0) = 2M (minimum value) and r(z) = r(−z). With ϕ ∈ [0, 2π), the embedded surface is the
paraboloid in Fig. 1 [12] which, as z → ±∞ (r → +∞), approaches to the Euclidean 2-plane. Behind this
result there is a tacit extension of the Swarzschild metric originally valid only in region I of the Kruskal
diagram in Fig. 2 to region IV of the same diagram.
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Figure 1. 2-dimensional embedding of the S4 wormhole.

2.2 SaDS4

The metric is
ds2
SaDS4

=
(

1− 2M
r

+ r2

a2

)
dt2 − dr2

1− 2M
r + r2

a2

− r2dΩ2
2 . (9)

Again for constant t = t0 and θ = π/2,

ds2
SaDS4

|t0,π/2 = −
(

dr2

1− 2M
r + r2

a2

+ r2dϕ2

)
. (10)

Identifying −ds2
SaDS4

|t0,π/2 with dl2E in (5), we obtain(
dz

dr

)2
= 1

1− 2M
r + r2

a2

− 1 = 2Ma2 − r3

ra2 − 2Ma2 + r3 . (11)

Since ra2−2Ma2 +r3 > 0 for r > rh and (dzdr )2 > 0, then 2Ma2−r3 > 0 which amounts to r < (2Ma2)1/3.
I.e. the embedding of the surface in E3 only exists in the interval

rh < r <
(
2Ma2)1/3

. (12)
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Figure 2. Kruskal-Szekeres diagram of S4.

(A straightforward calculation allows to prove that rh < (2Ma2)1/3.)
Using

2Ma2 = rh(r2
h + a2), (13)

the embedding is given by the integral

z(r) =
∫ r

rh

dr′

√
rh(r2

h + a2)− (r′)3

(r′)3 + a2r′ − rh(r2
h + a2) . (14)

2.3 RN4

The metric is
ds2
RN4

= fdt2 − dr2

f
− r2dΩ2

2 (15)

with horizon function
f = f(r) = 1− 2M

r
+ Q2

r2 . (16)

For Q2 < M2, f(r) has two roots:

r± = M(1±
√

1−Q2/M2) (17)
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with r+ the event horizon and r− a Cauchy horizon (see Fig. 3). For constant t = t0 and θ = π/2,

ds2
RN4
|t0,π/2 = −dr

2

f
− r2dϕ2. (18)

Identifyng −ds2
RN4
|t0,π/2 with dl2E of eq. (6) one obtains

(dz
dr

)2 = 2M/r −Q2/r2

1− 2M/r +Q2/r2 . (19)

Figure 3. RN4 horizon function for Q2 < M2.

For the embedding outside the event horizon, f(r) ≥ 0, then 2M/r − Q2/r2 ≥ 0 which implies
r ≥ Q2/2M ≡ rcr < r+; so the embedding in E3 exists for all r ≥ r+, and is given by the integral

z(r) = ±
∫ r

r+

dr′

√
2Mr′ −Q2

r′2 − (2Mr′ −Q2)
. (20)

Since rcr < r−, the embedding in E3 also exists in the range rcr ≤ r ≤ r− and is given by the same
integral with the lower limit replaced by rcr and an upper limit r ≤ r−. In the interval r− ≤ r ≤ r+,
f(r) ≤ 0, and so to keep (dzdr )2 ≥ 0 it must be r ≤ rcr which is outside the domain; so for r− ≤ r ≤ r+, in
Schwarzschild coordinates, there is no embedding of the wormhole in E3. This region will be studied in
Subsection 4.2 using Kruskal-Szekeres coordinates.

2.4 ERN4

The extreme Reissner-Nördstrom case is defined by the condition M2 = Q2 where both horizons coincide:

r+ = r− = M. (21)

The metric becomes
ds2
ERN 4 = (1−M/r)2dt2 − dr2

(1−M/r)2 − r
2dΩ2

2 (22)
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(see Fig. 4). So

− ds2
ERN 4|t0,π/2 = dr2

(1−M/r)2 + r2dϕ2 (23)

which identified with dl2E gives

(dz
dr

)2 = 2Mr −M2

(r −M)2 . (24)

(dzdr )2 ≥ 0 implies that the embedding of the wormhole exists only for r ≥M/2. As r →M , (dzdr )2 → +∞
and therefore dz

dr → ±∞.

Figure 4. ERN4 horizon function.

The basic cell of the Penrose diagram of the ERN4 spacetime (Fig. 5) only contains one asymptotically
flat region (I) and the region IV limited by the singularity at r = 0 (we call it “singular” region). Then
the wormhole only lies in I and IV . In other words, there is no parallel universe I ′ to which the universe
I is connected by the wormhole.

3 Isotropic Coordinates

Though our main interest is in the geometric description of the SaDS4 and RN4 wormholes, we first
review the description of the S4 wormhole in these coordinates. In all cases the analysis doesn’t involve a
standard embedding procedure; nevertheless, it gives a picture as if it were. Moreover, for the SaDS4
(RN4) case the picture is valid for all r > rh (r > r+) i.e. for ρ ∈ (0,+∞), which makes a difference with
respect to the embedding approach.

3.1 S4

We define the coordinate ρ through [13]

r =
(

1 + M

2ρ

)2
ρ (25)
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Figure 5. Basic cell of the Penrose diagram of ERN4.

with ρ ∈ (0,+∞), [ρ] = [r] = [L]. Then r = ρ+ M2

4ρ +M and so r → +∞ as ρ→ 0+ and ρ→ +∞. r(ρ)
has a minimum at ρ = M

2 with r(M2 ) = 2M (Fig. 6). Clearly then, the coordinates (t, ρ, θ, ϕ) only cover
the exterior regions (I) and (IV ) to the past and future horizons in the Kruskal diagram (Fig. 2).

For each r > 2M , there are two solutions of (25) given by

ρ± = r −M
2

1±

√
1−

(
m

r −M

)2
 , (26)

with ρ± → M
2 as r → (2M)+. (See Fig. 6.)

Replacing (25) in (4) we obtain the metric

ds2
S4
|I,IV = −

(
1− M

2ρ

1 + M
2ρ

)2

dt2 +
(

1 + M

2ρ

)4
(dρ2 + ρ2dΩ2). (27)

ρ = M
2 (coordinate singularity corresponding to the horizons) is a fixed point of the isometry

ρ→ M2

4ρ (28)

i.e. ds2
S4
|I,IV (ρ) = ds2

S4
|I,IV (M

2

4ρ ), with ρ+ρ− = M2

4 , that is ρ+ ↔ ρ− under (28).
At any hypersurface t = t0 ∈ (−∞,+∞) one obtains the conformally flat metric

− ds2
S4
|I,IV ;t0 = (λ(ρ))2(dρ2 + ρ2dΩ2

2) (29)

with conformal factor

λ(ρ) =
(

1 + M

2ρ

)2
, (30)

where
dρ2 + ρ2dΩ2

2 ≡ dl2E3−{0} (31)
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Figure 6. Relation between r and ρ for S4.

is the Euclidean metric of the punctured 3-space R3 − {0}; it represents a 2-sphere S2 with radius
r = (1 + M

2ρ )2ρ. Then, topologically,
S4|I,IV ;t0

∼= R× S2, (32)

where at ρ = M
2 one has the minimal sphere of radius 2M . The picture of the wormhole joining the

regions I and IV of the Kruskal diagram, is analogous to that corresponding to the case SaDS4 (with rh
replaced by 2M), except that in the present case the asymptotic space is Euclidean 3-space, while in the
SaDS4 case the asymptotic space is Lobachevski (anti De Sitter) 3-space with curvature radius a. (See
Fig. 7).

3.2 SaDS4

The coordinate ρ ∈ (0,∞) is now defined as

r =
(

1 + rh
4ρ

)2
ρ (33)

with rh given by (2). As a → ∞, (33) coincides with (25). As before, since r = ρ+ rh
2

16ρ + rh
2 , for both

ρ→ 0+ and ρ→ +∞, r → +∞. The minimum of r(ρ) is at ρ = rh
4 with value r = rh, and the two roots

of (33) for a given r > rh are

ρ± = 1
2

((
r − rh

2

)
±
√
r(r − rh)

)
. (34)

The picture of r(ρ) is analogous to that in Fig. 6 with 2M replaced by rh and M/2 by rh/4. As in the S4
case, the coordinates (t, ρ, θ, ϕ) cover only the regions I and IV exterior to the horizons in the Kruskal
diagram for SaDS4 (Fig. 8).

Replacing (33) in (9), the metric results

ds2
SaDS4

|I,IV = Adt2 − B

A
dρ2 −

(
1 + rh

4ρ

)4
ρ2dΩ2

2 (35)
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Figure 7. SaDS4 wormhole in isotropic coordinates.

where

A =
(

1− rh
4ρ

1 + rh
4ρ

)2

− rh
3

ρa2
(

1 + rh
4ρ

)2 +
(

1 + rh
4ρ

)4
ρ2

a2 (36)

and

B =
(

1−
(
rh
4ρ

)2
)2

. (37)

As in the S4 case, the transformation

ρ→ r2
h

16ρ (38)

is an isometry of (35) i.e.

ds2
SaDS4

|I,IV
(
r2
h

16ρ

)
= ds2

SaDS4
|I,IV (ρ), (39)

which has ρ = rh
4 as a fixed point. Also, ρ+ρ− = r2

h

16 , that is ρ+ ↔ ρ−.
At any fixed Schwarzschild time t = t0 ∈ (−∞,+∞), one obtains an hypersurface with metric

− ds2
SaDS4

|I,IV ;t0 = B

A
dρ2 +

((
1 + rh

4ρ

)2
ρ

)2

dΩ2
2 , (40)

which, at the equator θ = π/2 is the 2-surface

− ds2
SaDS4

|I,IV ;t0,π/4 = B

A
dρ2 +

((
1 + rh

4ρ

)2
ρ

)2

dϕ2. (41)

(40) ((41)) is a continuum “sucession” of 2-spheres (1-spheres) with radius (1+ rh
4ρ )2ρ which goes to infinity

when ρ→ 0+ and ρ→ +∞. Asymptotically, i.e. when r → +∞, as we mentioned in subsection 3.1, (40)
((41)) tends to the Lobachevski 3-space (2-plane) with curvature radius a. This is plotted in Fig. 7.
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Figure 8. Kruskal-Szekeres diagram of SaDS4.

3.3 RN4

As in the cases 3.1 and 3.2 we define the coordinate ρ ∈ (0,+∞) as

r = (1 + r+/4ρ)2ρ. (42)

So, r → +∞ as ρ when ρ→ +∞, and r → +∞ as 1/ρ when ρ→ 0+. The minimum of r is at ρ = r+/4
with r(r+/4) = r+. The picture is as that in Fig. 6 with M/2 replaced by r+/4 and 2M by r+.

The metric (15) becomes

ds2
RN4

(t, ρ, θ, ϕ) =
(

1− 2M
(1 + r+/4ρ)2ρ

+ Q2

(1 + r+/4ρ)4ρ2

)
dt2

−
(
1− (r+/4ρ)2)2

1− 2M
(1+r+/4ρ)2ρ + Q2

(1+r+/4ρ)4ρ2

dρ2 − (1 + r+/4ρ)4ρ2dΩ2
2 (43)

and so at the equator θ = π/2 and fixed t = t0,

− ds2
RN4
|t0,π/2(ρ, ϕ) = (1− (r+/4ρ)2)2

1− 2M
(1+r+/4ρ)2ρ + Q2

(1+r+/4ρ)4ρ2

dρ2 + ((1 + r+/4ρ)2ρ)2dϕ2. (44)

As in (38), the transformation

ρ→
r2

+
16ρ (45)
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is an isometry of the metric i.e.

ds2
RN4

(t,
r2

+
16ρ , θ, ϕ) = ds2

RN4
(t, ρ, θ, ϕ), (46)

and obviously also of −ds2
RN4
|t0,π/2. The coordinates (t, ρ, θ, ϕ) cover only the regions I and I ′ exterior

to the horizons r+ in the Kruskal diagram for RN4 (Fig. 9.a). The asymptotically (r → +∞) flat
hypersurface (surface) described by the metric −ds2

RN4
|t0(ρ, θ, ϕ) (−ds2

RN4
|t0,π/2(ρ, ϕ)) consists of a

continuum “succesion” of 2-spheres (1-spheres)with radius (1 + r+/4ρ)2ρ which → +∞ as ρ→ 0+ and
ρ→ +∞. The picture is analogous to that in Fig. 7 for SaDS4 with rh replaced by r+ at ρ = r+/4, and
asymptotic Euclidean spaces E3 (planes E2) at ρ = 0,+∞.

Figure 9. Kruskal-Szekeres diagram of RN4 for the regions: (a) Exterior (I, I ′), BH(II), WH(II ′); (b) BH(III),
WH(III ′),“singular” (IV, IV ′).

3.4 ERN4

The analysis and Figures for the extreme Reissner-Nördstrom wormhole in isotropic coordinates mimic
those for RN4, with the unique replacement r+ = r− = M .

4 Kruskal-Szekeres Coordinates

4.1 SaDS4

The K-S coordinates [1,2] allow the maximal analytic extension of black hole solutions; in particular of
the S4, SaDS4 and RN4 metrics. Besides the BH and WH regions, respectively II and III in Figures 2
and 8, respectively for S4 and SaDS4, and II and II ′ in Fig. 9.a for RN4 in the regions r− < r < r+,
they lead to the appearance of the “other” universe IV for S4 and SaDS4 (Figs. 2 and 8) and I ′ for
RN4 (Fig. 9.a), which, together with the “Schwarzshild region” I, are asymptotically flat for S4 and RN4
and anti De Sitter for SaDS4. The pinching-off and therefore non traversability of the S4 ER bridge is
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qualitatively discussed in Carroll [6] and quantitatively by Collas and Klein [7], and we refer the reader
to them. In this section we discuss in detail the SAdS4, RN4, and ERN4 cases.

The basic strategy to prove the pinching-off of the SaDS4 ER bridge is, like in other cases, to construct
the embedding of the bridge in Euclidean space with cylindrical coordinates (z, r, ϕ) for r < rh and then
show that as the time-radial K-S coordinates (T,X)→ (1, 0) in the BH region (or to (−1, 0) in the WH
region) -and therefore to the singularity r = 0 (see Fig. 8)- for the embedding function z = z(r) one has
(dzdr )2 → +∞ i.e. dzdr → ±∞. This implies that the revolution surface (or hypersurface if the metric is not
restricted to the equator) pinches-off and therefore makes the wormhole non traversable.

Let
f(r) = 1− 2M

r
+ r2

a2 ; (47)

then
f ′(rh) = df

dr
|r=rh = 2

(
M

r2
h

+ rh
a2

)
. (48)

Defining the coordinates

U = −sign(f)ef
′(rh)(r∗(r)−t)/2), V = ef

′(rh)(r∗(r)+t)/2) (49)

with U < 0 for r > rh (I), U > 0 for r < rh (II), and V > 0 for all r, where r∗(r) is the tortoise
Regge-Wheeler radial coordinate given by

r∗(r) =
∫ r

0

dr′

f(r′) = a2

3r2
h + a2 (rhln|1−

r

rh
| − rh

2 ln(1 + r(r + rh)
r2
h + a2 )

+ 3r2
h + 2a2√

3r2
h + 4a2

arctg(
r
√

3r2
h + 4a2

2(r2
h + a2) + rrh

)) (50)

[14]. From (49), r∗(r) = 1
f ′(rh) ln(−sgn(f)UV ) = r∗(UV ) = r∗(U, V ), with the symmetry

r∗(−U,−V ) = r∗(U, V ). (51)

For both r > rh and r < rh, r is unambiguously determined from r∗; then r(U, V ) = r(−U,−V ). Then
(U, V )→ (−U,−V ) is a symmetry of the SaDS4 metric

ds2
SaDS4

= −4f(r(U, V ))
(f ′(rh))2

dUdV

UV
− r2(U, V )dΩ2

2 , (52)

which can be extended to the regions IV (U > 0, V = −ef ′(rh)(r∗(r)+t)/2) < 0) and III (U < 0),
V = −ef ′(rh)(r∗(r)+t)/2) < 0). To pass from the two null coordinates (U, V ) and two spacelike coordinates
(θ, ϕ) to one timelike coordinate (T ) and three spatial coordinates (X, θ, ϕ), we define

T = V + U

2 , X = V − U
2 (53)

(both T,X ∈ (−∞,+∞) and the metric becomes

ds2
SaDS4

(T,X, θ, ϕ) = −4f(r(T,X))
(f ′(rh))2

dT 2 − dX2

T 2 −X2 − r2(T,X)dΩ2
2(θ, ϕ). (54)

For a spatial section T = T (X), (54) becomes

ds2
SaDS4

(T (X), X, θ, ϕ) =

− 4f(r(T (X), X))
(f ′(rh))2

dX2

T (X)2 −X2 ((T ′(X))2 − 1)− r2(T (X), X)dΩ2
2(θ, ϕ) (55)
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with T ′(X) = dT (X)
dX . Again by spherical symmetry at each spacetime point we can choose θ = π/2 and

then

− ds2
SaDS4

(T (X), X, π/2, ϕ) =

4f(r(T (X), X))
(f ′(rh))2

dX2

T (X)2 −X2 ((T ′(X))2 − 1) + r2(T (X), X)dϕ2. (56)

It is clear that this expression is the metric of a 2-dimensional surface. To proceed to its embedding in
E3, we define the vector

x = x(X,ϕ) = (F (X)cosϕ, F (X)sinϕ, z(X)) (57)
with squared length

dl2x = ((F ′(X))2 + (z′(X))2)dX2 + F (X)2dϕ2. (58)
Identifying (56) and (58),

(F ′(X))2 + (z′(X))2 = 4f(r(T (X), X))
(f ′(rh))2

(T ′(X))2 − 1
T (X)2 −X2 , (59)

(F (X))2 = (r(T (X), X))2 (60)
i.e. F (X) = r(X). Using

(T (X))2 −X2 = ∓ef
′(rh)r∗(r) (61)

where the -(+) sign corresponds to r > rh (r < rh), (59) becomes

(r′(X))2 + (z′(X))2 = ∓4f(X)e−f ′(rh)r∗(r)

(f ′(rh))2 (T ′(X))2 − 1). (62)

For a constant spatial section T (X) = T0 = const.,

(r′(X))2 + (z′(X))2 = ±4f(X)e−f ′(rh)r∗(r)

(f ′(rh))2 . (63)

Differentiating both sides of (61) at T = T0, dXdr |T=T0 = ± 1
2
f ′(rh)ef

′(rh)r∗(r)

X
dr∗

dr , and using dz
dX = dz

dr
dr
dX ie.

dz
dr = dz

dX
dX
dr , one obtains, for the case r < rh,

(dz
dr

)2|r=ε = −e
f ′(rh)r∗(r)

f(X)X2 − 1. (64)

From Figures 8 and 10 in [14], for r < rh, both f(r) and r∗(r) are negative, with f(r) decreasing with
decreasing r and with f(r) → −∞ as r → 0+ and f(r) → 0− as r → rh−, while r∗(r) decreases with
increasing r, with r∗(r) = 0 and r∗(r) → −∞ as r → rh−. The r.h.s. of (64) is positive or null if
e−f

′(rh)r∗(r) ≤ 1 + 1/|f(r)|. Both the left and right hand sides of this inequality → 1+ when r → 0+ and
→ +∞ when r → rh−. As r → 0+, the slope of the l.h.s. → 0+ while that of the r.h.s. → 1+, and as
r → rh− the slope of the l.h.s. → +∞ exponentially while that of the r.h.s. → +∞ as 1/δ2 for δ → 0.
Then the two curves intersect each other and the sign of the inequality changes. This means that there
exists a unique r̄ ∈ (0, rh) such that the inequality holds for 0 ≤ r ≤ r̄.

Given T = T0, a choice of X fixes r = r(T0, X) (see Fig. 8). Let’s choice T0 = 1; then as X → 0+,
r → 0+. From (50), r∗(0) = 0 and for small r = ε, r∗(ε) ∼= ε

f(ε)
∼= − ε2

2M . On the other hand, from (61),

1 = X2 + ef
′(rh)r∗(r) and so X2 = 1− ef ′(rh)r∗(r) ∼= 1− e−f ′(rh) ε2

2M ∼= f ′(rh) ε2

2M . Then,

(dz
dr

)2|r=ε ∼=
1

f ′(rh)ε → +∞ (65)

as ε→ 0+. So,
dz

dr
→ ±∞. (66)

Then the embedding curve z(r) at T = X = 0 and therefore at r = 0 has the behavior shown in Fig. 10.
(The fact that r > 0 excludes the existence of an inflection point.) It is clear that the revolution surface
generated by it as ϕ : 0→ 2π pinches-off and makes the SaDS4 wormhole non traversable.
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Figure 10. Embedding curve z(r) for SaDS4 near r = 0.

4.2 RN4

In Kruskal-Szekeres coordinates (T,X, θ, ϕ) the RN4 metric in the regions r+ ≤ r (exterior I and I ′) and
r− < r ≤ r+ (BH II and WH II ′) is given by

ds2
RN4

= 2M
κ2

+r
2 e
−2κ+r(r − r−2M )(r−/r+)2

(r − r−)(dT 2 − dX2)− r2dΩ2
2 (67)

where r± are given in (17),
κ± = ±r+ − r−

2r2
±

(68)

are the corresponding surface gravities, and r = r(T,X) is implicitly given by

T 2 −X2 = ∓e
2κ+r|r − r+|(2M)(r−/r+)2−1

(r − r−)(r−/r+)2 (69)

with - sign for r+ ≤ r and + sign for r− < r ≤ r+. The K-S diagram is shown in Fig. 9a.
Let us first study the wormhole embedding in the regions r− < r ≤ r+. If T = T (X) is a spacelike

section, the metric at a fixed T (X) = T0 and θ = π/2 is

ds2
RN4
|T0,π/2 = 2M

κ2
+r

2 e
−2κ+r(r − r−2M )(r−/r+)2

(r − r−)dX2 − r2dϕ2. (70)

Defining the vector in E3

x = x(X,ϕ) = (G(X)cosϕ,G(X)sinϕ, z(X)) (71)

with
dl2x = ((G′(X))2 + (z′(X))2)dX2 + (G(X))2dϕ2 (72)

and identifying −ds2
RN4
|T0,π/2 with dl2x, one obtains G(X) = r(X) and

(dz
dr

)2 = −e
−2κ+r

κ2
+r

2
(r − r−)(r−/r+)2+1

(2M)(r−/r+)2−1 (dX
dr

)2 − 1 (73)

where we used dz
dX = dz

dr
dr
dX . To obtain (dXdr )2 we use (69) with T = T0 = 0:

(dX
dr

)2 = (2M)2((r−/r+)2−1)

4X2
d

dr
( e2κ+r(r+ − r)
(r − r−)(r−/r+)2 )2, (74)
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X2 = −e
2κ+r(r+ − r)(2M)(r−/r+)2−1

(r − r−)(r−/r+)2 , (75)

which leads to

(dz
dr

)2 = 1
4κ2

+r
2 (r − r−
r+ − r

)(2κ+(r+ − r)− (r−/r+)2(r+ − r
r − r−

)− 1)2 − 1. (76)

As r → (r−)+, r − r− = ε with |ε| << 1, ε→ 0+; so the r.h.s. of (76) ∼ ε× 1
ε2 = 1

ε → +∞ i.e.

(dz
dr

)2 → +∞ as r → (r−)+, (77)

which implies
dz

dr
→ ±∞ as r → (r−)+. (78)

The form of the embedding curve is shown in Fig. 11, giving at this point a wormhole radius r−.

Figure 11. Embedding curve z(r) at r = r− for RN4.

For the embedding in the regions IV and IV ′ with boundaries at r = r− and at r = 0 (timelike
singularity hypersurface) i.e. for 0 < r ≤ r−, we use the K-S coordinates (T,X, θ, ϕ) which cover the
regions IV , IV ′, III and III ′ (Fig. 9b) with metric

ds̃2
RN4

= 2M
κ2
−r

2 e
−2κ−r(r+ − r

2M )(r+/r−)2
(r+ − r)(dT2 − dX2)− r2dΩ2

2 , (79)

where r = r(T,X) is implicitly given by

T2 − X2 = −e
2κ−r|r − r−|(2M)(r+/r−)2−1

(r+ − r)(r+/r−)2 . (80)

(The region II in Fig. 9a coincides with the region III in Fig. 9b, and the same holds between the regions
II ′ in Fig. 9a and III ′ in Fig. 9b; the transformations (TII(t, r), XII(t, r))→ (TIII(t, r),XIII(t, r)) and
(TII′(t, r), XII′(t, r))→ (TIII′(t, r),XIII′(t, r)) are diffeomorphisms.)

Again, if T = T(X) is a spacelike section, the metric at a fixed T = T0 and at the equator θ = π/2
becomes

ds̃2
RN4
|T0,π/2 = − 2M

κ2
−r

2 (r+ − r
2M )(r+/r−)2

(r+ − r)dX2 − r2dϕ2. (81)
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For its embedding in E3 we use dl2x given by (72), and eq. (80) at T0 = 0; a straightforward calculation
similar to the one for the case r− < r ≤ r+ leads to

(dz
dr

)2 = 1
4κ2
−r

2 (r+ − r
r− − r

)((2κ− + (r+/r−)2

r+ − r
)(r− − r)− 1)2 − 1. (82)

Near the singularity i.e. for r = ε, |ε| << 1,

(dz
dr

)2 ∼=
r+/r−
4κ2
−ε

2 (2κ−r− + r+/r− − 1)2 − 1 = r+r−
4ε2 − 1→ +∞ as ε→ 0+ (83)

and therefore
dz

dr
→ ±∞ as ε→ 0+. (84)

So, the form of the embedding curve z(r) is like that in the SaDS4 case (Fig. 10), meaning that the
wormhole pinches-off at the singularities becoming non traversable.

4.3 ERN4

There is only one singularity at r = 0 (Fig. 5) and the result is the same as for RN4. In (83), r=r+ = M ,
and so

(dz
dr

)2 =
r2

+
4ε2 − 1→ +∞ as ε→ 0+, (85)

and therefore
dz

dr
→ ±∞ as ε→ 0+. (86)

5 Final Remarks

Though we have reviewed the kinematical reason for the non traversability of the wormholes associated to
the black holes S4, SaDS4, and RN4, intensive work is being doing at present on eternal traversable black
holes [15,16], with appropiate quantum conditions on the energy-momentum tensor; in particular, the
violation of the average null energy condition. It is well known that through a Casimir-like effect, quantum
fields can produce states with negative energy at a given spacetime point, stabilizing an otherwise non
traversable wormhole. According to the present authors, the most interesting problem is to see if some of
these efforts towards the construction of traversable wormholes can lead to the existence of closed causal
curves and therefore to time travel.
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