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Abstract. On the basis of the kinetic equation for interaction of the electromagnetic radiation 
quantums with rarefied gas the time dynamics of approach to equilibrium thermal radiation of 
quantum distribution function and density of radiation energy is investigated. It is shown, that in a 
seen interval of electromagnetic waves this process lasts some micro seconds. The deduction of the 
kinetic equation of interaction of quantums with atoms of rarefied gas is submitted. Some 
consequences from this equation are investigated. 
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1   Introduction 

Transient processes at thermal radiation are of interest in various areas of technics and biology. 
Unfortunately, to calculate duration of transient radiating processes in complex, for example, organic 
systems, it is practically impossible. But for rather simple systems such as rarefied gas this analysis is 
quite feasible. It can be carried out with the help of the Boltzmann’s kinetic equation. 

The theories connected to the Boltzmann’s kinetic equation it is rather widely applied to the analysis 
of various physical processes [1]. With the help of such theories interactions of the ideal gas molecules, of 
the particles in plasma, of the phonons in crystals, etc. have been successfully analysed. The most exact 
deduction of Maxwell’s distribution at the ideal gas molecules in the velocities (or their kinetic energies) 
is carried out with the help of the Boltzmann’s kinetic equation [2] at examination of cooperating atoms 
system in a stationary condition. The Boltzmann’s kinetic equation first of all reflects non-stationary 
process of the particles interaction among themselves, influence of this interaction on an establishment 
of distribution of molecules, influence on investigated system of external factors. 

The method of the kinetic equations with use of a principle of detailed balance is applied also at 
research of transition of the atoms cooperating with electromagnetic radiation from one state in another 
[2]. 

For photons in difference, for example, from molecules of gas the energy distribution can vary only at 
their interaction with atoms of substance [2]. Therefore character of transient to equilibrium thermal 
radiation of gas should depend on characteristics of gas, distribution of the particles directly cooperating 
with radiation. 

In works which investigate the Boltzmann’s kinetic equation for photons in gas it is possible to 
allocate two directions. 

The first direction uses so-called the one-velocity theory of carry of particles [3, 4, 5]. The basic 
attention in these works is given to the kinetic equation for atoms of substance. The kinetic equation for 
radiation is written similarly and as a whole auxiliary character has. Transition of radiation to 
equilibrium distribution of Bose - Einstein usually is not analyzed. 

The second direction is connected to A.S. Kompaneets’ basic work [6]. The further analysis of the 
kinetic equation offered him is carried out in [7, 8]. The main lack of this equation in our opinion is the 
assumption that function of electrons distribution is Maxwell’s. But also till now this equation is used in 
works on scattering of photons on electrons in astrophysical objects [9]. The research submitted in the 
given work as a whole corresponds to the second direction. 

It is possible to note also that the examined system of photons and electrons interaction in rarefied 
gas differs from similar system in a solid body where the accounting of the Pauli’s principle (besides 
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function of electrons distribution in atom) in system of electronic gas [2, 10, 11] is necessary. It 
complicates integral of interaction. 

The purpose of the present work is reception and the analysis of the Boltzmann’s kinetic equation for 
system “photons - rarefied gas”, research of time dynamics of approach of the photon energy 
distribution to equilibrium distribution of the Bose – Einstein, and the density of thermal radiation 
energy to equilibrium law of Stefan – Boltzmann, and deviations of non equilibrium radiation from the 
law of the fourth degree of temperature. 

2   The Kinetic Equation of Electromagnetic Radiation with Rarefied Gas 
Interaction 

The kinetic equation for radiation in the medium received by a method of multipartial function of 
distribution [12] hardly it is possible to assume for our purposes satisfactory. It is connected to absence 
of influence of radiation on distribution of the medium particles. Therefore for a finding of the 
Boltzmann’s kinetic equation of system «photons - rarefied gas» is interest to consider in more detail the 
transient process of an establishment of equilibrium quantum distribution of electromagnetic radiation. 
For this purpose we shall consider interaction of some flux of monochromatic quantums by energy =h 
for nonequilibrium electromagnetic radiation where h is a Planck's constant,  - frequency of 
electromagnetic radiation, with atoms of substance in some volume V, fig. 1. 

 

Figure 1. Interaction of quantums of electromagnetic energy with volume of rarefied gas 

Number of the quantums falling on volume in unit of time we shall designate n1, number of the 
quantums which are taking off from volume V on all directions we shall designate n3. System in which 
quantums cooperate we shall present in the following kind. We shall assume that it represents rarefied 
gas and will consist of identical particles - atoms which can be in two states: n2 particles are in the first 
state (not excited atoms) and n4 particles are in the second state (the excited atoms). 

Change of number taken off an element of volume dV photons dn3 is determined by the following 
reasons: change of number of falling photons dn1; or change of number of photons owing to their 
interaction with particles in the first state dn2 (absorption of quantums by the not excited atoms of 
substance and their excitation), the process n2n4; or change of number of photons owing to transition 
(spontaneous or compelled) particles from the second state in the first state dn4, the process n4n2 
(radiation of photons from substance the excited atoms). 

Hence: 
 3 1 2 4dn dn dn dn   . (1) 

It is accepted that one quantum there can be only one of the listed above events. 
Change of number of the quantums flying in volume dV we shall present as: 

 1 1 13

2dn f dp dV
h

 , (2) 

where 1 1 1 1X Y Zdp dp dp dp  there is product of changes a component of flying quantums impulse, and 

1 1d dp dV   - an element of phase volume in which quantums flying in volume V get. Size 

1 1 1 1( , , )f f t r p  is a function of flying quantums distribution (density of probability for quantum to have 
the given characteristics: position, an impulse or energy), 1r  - a radius - vector of the flying quantum, h3 
- the element of phase volume occupied by a photon (or atom), the factor 2 reflects two possible 
polarizations of a photon in volume h3. 
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Let's designate change of an atom impulse owing to its excitation by quantum dp2. Obviously, under 
of an impulse preservation law is dp2=dp1 (reduction of a quantum impulse results to increase of an 
atom impulse). Therefore in process n2n4 the element of phase volume d2=dp2dV in which atoms 
cooperating with quantums is negative. It is possible to assume that the cooperating quantum and atom 
are in one point therefore |d1|=|d2|. Having divided the equations (1) on phase volumes of 
corresponding processes, we receive: 

 3 1 2 4
3

1 1 2 2

2dn dn dn dn
d d d d h


   

    , (3) 

where  there is some value which physical sense we shall determine later. The factor 
3

2
h

 is used for 

simplification of transformations. The size 2

2

dn
d

 is used with plus since for size dn2, i.e. for process n2n4, 

the phase volume d2 is negative. 
Using (2) and (3) it is possible to write down: 

  3 1 13

2dn f d
h

    (4) 

Having designated: 

 4 2 23

2dn f dp dV
h

 , (5) 

where 2 2 2 2( , , )f f t r p  is some functional of distributions of the excited atoms (the set of the distribution 
functions), 2r  - a radius - vector of atom radiating quantum, factor 2 - two possible orientations of an 
electron spin in radiating atom in volume h3. 

A functional f2 on the one hand reflects electron distribution in atom (i.e. distribution of particles 
with a semi-whole spin) - internal distribution, on the other hand it reflects external thermal power 
distribution of atoms. Both it is distributions can change at a photon irradiation of the gas system. 

From (3) and (5) we shall find: 

  2 2 23

2dn f d
h

   . (6) 

The number of the quantum interactions which have flown in volume dV with not excited atoms of 
substance is equal: 

  1 2 1 2 1 26

4dn dn f f dp dVd
h

   . (7) 

This number of quantums gets in phase volume d1d2. 
On the other hand this phase volume leaves the certain number of the quantums which have taken off 

from volume V: 

  3 4 2 1 2 16

4' ' ' 'dn dn f f dp dVd
h

   . (8) 

The strokes at functions of distribution mean that a kind of the distribution functions both at 
photons, and at the excited atoms can change during time before and after interaction of quantums with 
atoms. 

The remained in phase volume d2=d1d2 quantums can be found under the formula: 

      2 * * 2
1 2 2 16

4 ' ' id n f f f f h d
h

            . (9) 

In the formula (9) (h*i
*) is -function which takes into account that only at energy of quantum h, 

corresponding energy of electronic transition i, there is an interaction of quantums to atoms of 
substance. Asterisks at sizes mean that comparison goes on dimensionless energies the scale at which is 
identical. The similar approach, for example, is carried out in [1]. 

Let's copy the formula (9) as: 
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      
3

* *
1 2 2 13

2 ' '
2 i
h dndf d f f f f h d

d h
     


 

          
 

, (10) 

where ( , , )f f t r p  there is the time-dependent function of the quantum distribution which before 
interaction had function the distribution function f1, and after interaction f1'. Accordingly for this time 
has changed and functional distributions of atoms from f2 up to f2'. 

 

Figure 2. Interaction of quantum of electromagnetic energy with atom 

Let's introduce effective section of interaction  of quantum with atom. Depending of effective section 
change of interaction on a solid angle of quantum scattering , fig. 2, it is possible to write down as: 
 d d   . (11) 

Hence the volume element of interaction becomes: 
 dV cd c d    . (12) 

In the formula (12) the unit time interval is examined, therefore instead of length of a volume element 
the quantum velocity c is used. Besides we have neglected velocity of an atom movement in comparison 
with quantum velocity of electromagnetic radiation cooperating with atom. 

Taking into account h
c


p , and X Y Zdp dp dp dp  we shall find an element of phase volume: 

 
3 3

3 3
3 2

h hd dpdV d cd d d
c c

         . (13) 

Integrating the expression (10) on all frequencies and a solid angle with the account (13) we receive: 

      * * 3
1 2 2 12

,

2 ' ' if f f f f h d d
c 

      


         . (14) 

In (14) change of distribution function f in unit of time is examined, therefore in the left part (14) 

will be speed of change of the distribution function df
dt

 [1]. In the right part (14) between functions of 

distribution without strokes and with strokes the time interval also is equal to unit. Hence: 

      * * 3
1 2 2 12

,

2 ' ' i
df f f f f h d d
dt c 

      


        , (15) 

where      * * 3
1 2 2 12

,

2 ' ' iI f f f f h d d
c 

      


         there is integral of interaction of 

electromagnetic radiation quantums with atom of substance. The integral of the interaction similar to 
received is found in [1] for scattering of phonons in crystals on impurity. 

The equation (15) is the kinetic equation of interaction of electromagnetic radiation quantums and 
atoms. 

The solution of the integro-differential equation (15) rather difficult mathematical problem, therefore 
we shall consider two special cases. 
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3   A State of Equilibrium at Interaction of Radiation with Atoms of a Gas 

At interaction of the equilibrium electromagnetic radiation quantums and equilibrium system of atoms 
the distribution of quantums and atoms of substance does not change, i.e. 0df

dt
 . From this condition 

according to (15) it is possible to write down that 
    1 2 2 1 0f f f f     . (16) 

The functional equation with two unknown functions which has infinite set of solutions is received. 
Strokes in the equation (16) are omitted since functions f1 and f2 in this case in due time do not change. 

One of functions of distribution f1 in the equation (16) should satisfy to distribution of Bose - Einstein 
for photons radiated by the absolutely black body [13]: 

 1
1

e 1X
f 


, (17) 

where iX
kT

 
 , and i is energy of quantum in phase volume di,  - the chemical potential 

attributed to one quantum, k – Boltzmann’s constant, T - absolute temperature of examined quantum 
system. 

Substitution (17) in (16) allows receive functional of atom distributions: 

 
 2
1

e 2 1X
f




 
. (18) 

At =1 the functional (18) has transit in Fermi – Dirac’s distribution [13]. In this case distribution of 
the excited atoms fully corresponds with distribution of electrons in these atoms. It means that the basic 
role at interaction of photons and atoms (i.e. at change of a system state) is played the excitation of 
atoms determined by transition of electrons on higher power levels. By interaction of atoms in rarefied 
gas it is neglected. The size is iX

kT
 

 . But as against (17) i is energy of the excited atom in phase 

volume di corresponding to energy of excitation of electron under action of radiation quantum by 
energy i, and  in this case is energy of Fermi’s level. 

At =2 the distribution of atoms of substance in a condition of equilibrium (18) is become identical to 
Maxwell’s distribution. It means that the basic role at interaction of electromagnetic radiation quantums 
and atoms is played not excitation of atoms, but the change of their kinetic energy influencing on 
distribution of atoms. 

Thus it is possible to draw a conclusion that size  reflects character of interaction of quantums with 
atoms of substance: in particular, at =1 the basic influence on distribution of atoms it is occurs owing 
to their excitation, at =2 owing to change of their kinetic energy. 

For intermediate non-equilibrium value of functional f2, in case when at an irradiation of gas takes 
place comparable on energies excitation of atoms and change of their kinetic energy, hardly is possible to 
describe f2 the uniform formula such as (18). 

The kinetic equation (15) can be copied using expression for a full derivative in the left part: 

      * * 3
1 2 2 12

,

2 ' 'c i
f f fc F f f f f h d d
t r p c 

      


                , (19) 

where c
pF
t





 is the force working on a photon, for example, with external gravitational field [14]. 

4   The Time Dynamics of Transition of Radiation in an Equilibrium 
Condition 

Let's consider time asymptotics of the function f1 of photon energy distribution which approach to 
equilibrium radiation of absolutely black body. 

Let's assume that functional of the atom distributions it is constant in time and represents 
equilibrium function f2, so f2=f2'. The function of photon distribution we shall present as: 
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 1 1 1'f f f  , (20) 
where f1 there is equilibrium value of function, f1 - small change of function f1 for small time t. In the 

formula (20) the first term in the right part does not depend on time, therefore 1fdf f
dt t t





 


. 

Substituting (20) in (15) we shall receive: 

     31
1 2 2 1 2 12

,

2f
f f f f f f d d

t c 


    

 

        . (21) 

We assume also that distinction in energies of electronic levels is insignificant that is correct for 
external electrons of atom. Therefore the power electrons spectrum (as well as a spectrum of atom 
speeds) is assumed in the given approximation continuous and -function in (21) is not taken into 
account. 

The first difference in integral of interaction in the right part (21) is equal to zero identically in 
condition of equilibrium hence we receive: 

 3 31 1
2 1 22 2

, ,

2 2f f
f f d d f td d

t tc c 

 
     

  

         . (22) 

Let's designate 1f F
t




 . Besides we shall assume that dispersion of photons after interaction with 

atoms occurs uniformly in all directions, i.e. the section of interaction  does not depend on an angle of 
dispersion. Then integrating on solid angle  we have 

 3
22

0

8F f F td
c

      . (23) 

The integrated equation which can be solved concerning function F is received. Finding a third 
derivative from the left and right parts (23) on frequency , we receive: 

 
3

23 2

8F f F t
c
  




 


. (24) 

The solution of the equation (24) we shall write down as: 
  3

0 expF F t   , (25) 

where F0 there is a constant of integration, and size 
1
3

22
2 f

c
  

 
  

 
. 

Taking into account 1f F
t




  we shall find: 

  3
1 0 expf F t t     , (26) 

The size t=tt0 is a time from the initial moment t0. If to accept t0=0, and f10 – the distribution of 
Bose - Einstein, so f1=f1f10 the achievement by distribution f1 of the equilibrium condition can be 
calculated under the formula: 
  3

1 10 0 expf f F t t   . (27) 

In the formula f1=f1f10 it is carried out obvious re-designation sizes to exclude strokes. 
The size F0<0 as the probability of an equilibrium state of the quantum energy distribution is more 

than nonequilibrium, hence f1<f10. Therefore there is f1=f1f10<0. 
The formula (27) shows how nonequilibrium distribution of photon energy has approaching to 

equilibrium of Bose-Einstein’s distribution f10 of absolutely black body radiation. It actually gives as a 
first approximation the time non-stationary amendment to this distribution. At time t aspiring to 
infinity from (27) naturally follows f1=f10. 
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Figure 3. Time dependence of transition of quantum distribution function of thermal radiation in an equilibrium 
state 

On fig. 3 the dependence 1

0

f
F


 as function of time t is shown. The ratio 1

0

0
f

F


  as in numerator and 

a denominator are negative sizes. 

Investigating on an extremum the formula (27) it is received that function 1

0

f
F


 attains a maximum at 

the moment of time 
3

27
mt 
 . The descending part of the curve at t>tm has physical sense only. It is 

consequence of that in due time the size f1 should decrease on the module up to zero. 
For the analysis of the function f1 behaviour in the domain of far from equilibrium, i.e. at big on the 

module f1 the solution of the full kinetic equation (19) is necessary that is beyond frame of given article. 
Let's estimate size of time tm, from which the law (27) for frequency =0.6  1015Hz in a seen range of 

the wave lengths is correct. We shall suppose f2=0.5. The effective section of interaction  can be less 
sizes of atom (owing to tunnel effect) or more sizes of atom (antistock’s interaction). For estimation of  
we shall assume that the effective section of interaction is approximately equal to the sizes of hydrogen 
atom. Hence =0.878  1020m2. In result we shall find parameter =642s1/3 and time tm=107s. For 
these parameters the curve on fig. 3 is plotted. 

Is interest for finding of the non-stationary amendment to the Stefan – Boltzmann’s law for 
volumetric density of energy of thermal radiation u. 

Using the known formula [2] after simple transformations (for photons  = 0 [13]) with use (27), we 
shall find: 

 
 3 4

13 3
0

8
c

Thu f d T
c t

   


   , (28) 

where c there is constant of Stefan – Boltzmann’s. The size  
 

0
4/33 2

2

3

/

hF
T

c f c





  depends on 

temperature since on temperature depends functional f2 (18). At deduction the formula 3
4

0

6mxx e dx
m


   

is used. The formula (28) is correct for time 
3

27
mt t


  . 

The size is (T)<0 owing to negative size F0. It reflects the known fact that the volumetric density of 
equilibrium radiation energy of absolutely black body is greatest possible. 

In due course at transition of system in an equilibrium state at t the non-stationary amendment in 
(28) to aspire to zero and volumetric density of radiation energy to Stefan – Boltzmann’s law. With 
growth of temperature the contribution of the non-stationary amendment also is reduced. If to believe 
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size F0 is constant that in a case of Maxwell’s distribution of molecules the size 
 

0
4/33 2

3

/

hF

c c





 , in 

case of Fermi – Dirac’s distribution 
 

0
1/34

6

0.5

hF

c


 
 . 

5   Conclusion 

On the basis of Boltzmann’s kinetic equation the process of interaction of rarefied gas with quantums of 
electromagnetic radiation is considered. The modified kinetic equation for this process is found. 

Solutions of the received kinetic equation in a stationary case are investigated and in case of a small 
deviation of quantum distribution from stationary Bose – Einstein’s distribution. It is shown that in a 
stationary variant to the kinetic equation satisfy distributions of Bose - Einstein for quantums and 
Fermi - Dirac or Maxwell for atoms of gas. Research of the solution of the kinetic equation for transient 
process at a small deviation of quantum distribution from equilibrium state has allowed to receive the 
law of approach of thermal radiation to an equilibrium state. This process proceeds some micro seconds. 

The non-stationary additive to density of an energy flux in the Stefan – Boltzmann’s law dependent 
on temperature is found. 
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