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Abstract. The principle of calculation of a plate from a metamaterial with inductive type chiral 
inclusions is submitted. It is shown that distribution of an electromagnetic wave in such substance 
can be investigated with the help of using of a chiral parameter and on the basis of a detailed method 
of calculation. By comparison of two methods the dependence of chiral parameter from frequency of 
electromagnetic radiation falling on a plate is found. With the help of a detailed method the 
nonlinear differential equation for potential on the chiral plate is found. It is shown that this equation 
has solutions as traveling solitary waves and standing waves but not traveling sine waves. The 
analysis of the received solutions of the nonlinear equation is carried out. Transition from the 
multiwave solution to the solution as standing waves is graphically shown at reduction of distance 
between the chiral elements. 
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1   Introduction 

Now the materials (Greek. "meta" outside), i.e. composite materials with the various inclusions 
distributed both chaotically, and periodically are widely applied in particular in a radio engineering, at 
designing of space devices, in medicine, etc., [1, 2, 3, 4]. Due to these inclusions the received materials 
have many useful physical, electric, optical and other properties which are not present at natural 
substances. Among metamaterials are allocated the substances with chiral properties [5] which are 
capable to rotate a plane of polarization of electromagnetic waves. In optics as analogue of similar 
substances are the optical active substances, for example, quartz, a glucose solution etc. 

However methods of calculation of metamaterials are enough limited [6]. Basically all calculations are 
based on the solving of the Maxwell’s equations and the material equations selected according to a 
problem. 

The existing method has restrictions since average characteristics of metamaterials are usually used 
only, for example, a chiral parameter. 

In the present work attempt of more detailed approach to properties of chiral inclusions into 
metamaterials is made; the analysis of influence of these properties on interaction of chiral elements with 
the electromagnetic wave falling on a plate from a metamaterial is carried out. 

2   Standard Method of Calculation of a Metamaterial with an 
Electromagnetic Wave Interaction 

At research of metamaterials with chiral inclusions on the basis of the Maxwell’s equations usually use 
the material equations including so-called chiral parameter χ . In [5, 6, 7] the material equations in the 
following kind are offered: 

 a i
V
χε=D E H , (1) 

 a i
V
χµ= ±B H E , (2) 

where D and B there are an induction of electric and magnetic fields in the electromagnetic wave 
propagating in a chiral medium, E and H – strength of the electric and magnetic components in wave, 
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aε  and aµ  - absolute electric and magnetic permeability of a chiral medium, V – velocity of an 
electromagnetic wave in a chiral medium, χ  - a chiral parameter, in this case dimensionless size. 

In [7] it is shown that the material equations (1) and (2) can be written down in more simple kind: 
 ( )1 aχ ε= ±D E , (3) 

 ( )1 aχ µ= ±B H . (4) 
In formulas (1) - (4) top signs define the right-turning chiral element, bottom signs – left-turning. 
Using (3) and (4) it is possible to show [7] that if a chiral medium has only reactive resistance, the 

electromagnetic wave in it submits to the wave equations: 

 
2 2

2

1
V t
χ ± ∂

∆ =  
∂ 

DD , (5) 

 
2 2

2

1
V t
χ ± ∂

∆ =  
∂ 

BB , (6) 

where t there is time. 
Further us the equation (5) will interest only. Substituting (3) in (5) and transit to scalar potential 

ϕ  [8] we shall find: 

 
2 2

2

1
V t
χ ϕϕ

 ± ∂
∆ =  

∂ 
. (7) 

Let's search the solution of the equation (7) as: 
 ( ) ( )0 exp i tϕ ϕ ϕ ω− = r , (8) 

where 0ϕ  there is an origin of potential, r - set of the spatial coordinates, ω  - cyclic frequency of an 
electromagnetic wave falling on substance. 

Substituting (8) in (7) we have: 

 ( ) ( ) ( )2 21 0kϕ k ϕ∆ + ± =r r , (9) 

where k
V
ω

=  there is a module of an electromagnetic wave vector. 

Solving the equation (9) with use of initial and boundary conditions it is possible to investigate 
processes of reflection, refraction, diffraction of an electromagnetic wave in a metamaterial. 

3   Detailed Method of Calculation of Metamaterial with Electromagnetic 
Wave Interaction 

Let's consider a plate of the metamaterial with chiral inclusions of the inductive type. The plate consist 
of the dielectric in which are included the current-carrying chiral elements as spirals which axis is 
directed across a plate. The chiral elements are distributed periodically 

 

Figure 1. The plate of metamaterials irradiated by an electromagnetic wave 
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On fig. 1 the irradiation of a plate by an electromagnetic wave is shown. We assumed that chiral 
inclusions have no active resistance. The chiral element completely penetrates a plate. 

Feature of a plate is the capacity distributed on its surfaces at dot inductive inclusions. Therefore to 
examine the interaction of separate chiral element having inductance and capacity with an 
electromagnetic wave is incorrectly. 

At the irradiation on the plate there is a potential difference submitting to the equation (7). The 
density of a current through plate will look like: 

 ( )0m m mj C g
t
ϕ ϕ ϕ∂

= + −
∂

, (10) 

where mC  there is capacity of the plate area unit, ϕ  - potential on a plate relative to entry level 0ϕ , 

mg  - electrical conductivity of units of the plate area due to an inductive component. 
The first term (10) reflects a capacitor bias current, the second term - an inductive current through 

the chiral elements. 
For spiral chiral element it is possible to write down the equation of a voltage balance: 

 ( )0
i

i i

j
L S

t
ϕ ϕ

∂
− = −

∂
, (11) 

where ij  there is density of a current through the i-th chiral element, iL  - inductance i-th chiral 
element, iS  - the area of plate, falling one chiral element having inductive electrical conductivity ig . 

The density of a current ij  through the chiral element depends on a potential difference on a plate 
and electrical conductivity it chiral element ig  under the formula of the Ohm’s law: 

 ( )0i i ij S g ϕ ϕ= − . (12) 
Substituting (12) in (11) we shall find: 

 
( )0

i

i

g
L

t

ϕ ϕ

ϕ

−
= −

∂
∂

. (13) 

Electrical conductivity falling unit area of a plate it is equal: 

 
( )0

m

i i

g
S L

t

ϕ ϕ

ϕ

−
= −

∂
∂

, (14) 

where it is taken into account i m ig g S= . 
Having substituted (14) in (10) we shall find: 

 
( )20

m m

i i

j C
t S L

t

ϕ ϕϕ
ϕ

−∂
= −

∂ ∂
∂

. (15) 

Using i m iC C S=  - the capacity of the plate falling one chiral element, and designating 2
0

1

i iC L
ω =  - 

square of the chiral element natural frequency, we shall find: 

 ( )
2

2 2
0 0

m

m

j
C t t

ϕ ϕ ϕ ϕ ω
 ∂ ∂

= − − ∂ ∂ 
. (16) 

Let's consider a plate consisting of chiral elements one lines, fig. 2. 
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Figure 2. The single-row chiral plate 

Along this plate the inductive current flows. 
The law of an electromagnetic induction for this current looks like: 

 0
XIL
t

ϕ ϕ
∂

− = −
∂

, (17) 

where ( )0X X
SI
l

γ ϕ ϕ= −  there is a longitudinal inductive current, Xγ  - specific inductive electrical 

conductivity of a single-row plate, L - its inductance, S - the area of cross-section of a single-row plate, l 
- its length. 

Hence: 

 1 0XSL
t
ϕγ ϕ ϕ∂

− = −
∂

, (18) 

where 1
LL
l

=  there is inductance of a single-row plate unit of length. 

Under the Ohm’s law for density of a longitudinal current we have: 

 X Xj
X
ϕγ ∂

= −
∂

. (19) 

Hence: 

 
2

2X Xdj dX
X
ϕγ ∂

= −
∂

. (20) 

Having divided (20) on (18), and having reduced on Xγ  we shall find: 

 
2

0
2

1

Xdj dX
XSL

t

ϕ ϕ ϕ
ϕ

− ∂
=

∂ ∂
∂

. (21) 

On the other hand taking into account that a longitudinal current is defined only presence of a cross-
section current (or on the contrary) we have: 
 X mSdj j bdX= , (22) 
where b there is width of a single-row plate. 

Substituting (21) in (22) we have: 
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2

0
2

1

mj XL b
t

ϕ ϕ ϕ
ϕ

− ∂
=

∂ ∂
∂

. (23) 

Further substituting (23) in (16) we shall find: 

 ( )
22 2 20

0 02
1mC L b tX

ϕ ϕ ϕ ϕ ϕ ϕ ω
−  ∂ ∂

= − − ∂∂  
. (24) 

Taking into account 1 mC C b=  - capacity of a single-row plate unit of length and 2

1 1

1V
C L

=  - a 

square of velocity along a plate of an electromagnetic field we have: 

 ( ) ( )
22 22 2

0 0 02
V

tX
ϕ ϕϕ ϕ ϕ ϕ ω

 ∂ ∂
− = − − ∂∂  

. (25) 

The nonlinear equation (25) for chiral medium was first obtained in [9]. 
The nonlinear equation (25) can be transformed to a kind correct for spatial geometry: 

 ( )
2

2 2
0 0

0

1V
t
ϕϕ ω ϕ ϕ

ϕ ϕ
 ∂

∆ + − =  − ∂ 
. (26) 

Linearization of the equations (26) can be carried out by a ratio (8): 
 ( ) ( )2 0Skϕ ϕ∆ + =r r , (27) 

where is 
2 2

2 2 20
02Sk k k

V
ω ω+

= = + , where Sk  there is a wave number of an electromagnetic wave in chiral 

medium. 
Let's notice that the nonlinear equation similar (25) and (26) arises at research of a self-induced 

transparency in substance [10], and of the nervous impulse propagation (sequence of action potentials) 
on a nervous fiber [11, 12]. 

4   Various Kinds of the Equation Solution of a Metamaterial and an 
Electromagnetic Wave Interaction 

The equations (27) and (9) reflect the same physical process – propagation of electromagnetic 
oscillations on the chiral plate. Distinction consists that at a deduction (27) as against (9) was not 
necessity to use the material equations (1) - (4) i.e. the chiral parameter was not used. 

On the basis of the equations (27) and (9) identity it is possible to put down: 

 ( )22 2 2 2
0 1Sk k k kk= + = + . (28) 

Further for definiteness are assumed the right-rotating chiral elements. 
Hence the chiral parameter can be written down as: 

 
2
0
2

1 1
k
k

k = + − . (29) 

If 0k k<<  or 0ω ω<<  (natural frequency of chiral medium is much less than frequency of a falling 
electromagnetic wave) the formula (29) becomes simpler: 

 
2 2
0 0
2 22 2

k
k

ω
k

ω
= = . (30) 

Let's notice that quantum calculation of an optical active substance [13, 14] results to the formula for 
chiral parameter: 

 0
2 2
0

2
3

j

j

V ωηχ
ω ω

=
−

, (31) 

Theoretical Physics, Vol. 5, No. 3, September 2020 27

Copyright © 2020 Isaac Scientific Publishing TP



where   there is Planck's reduced constant, η  - size proportional to product of the real parts electric 
and magnetic dipole moments of an optical active molecule power transition excited by a light of the 
wave given length, 0 jω  - in this case the frequency corresponding to power transition 0 j→  [15]. 

The increase in a degree of frequency dependence 0ω  up to square-law in the formula (30) in 
comparison with (31) is characteristic at transition from quantum area in classical. 

On fig. 2 the illustrative graph of the potential oscillations on the chiral plate is shown according to 
the oscillatory solutions satisfying the equations (9) and (27). Character of oscillations will be 
investigated below. 

4.1  The Solution as Solitary Waves 

The nonlinear equation (25) has solution as a solitary traveling wave: 

 
( ) ( )( )20 0 0 0

0 max exp
2

k X X t tω
ϕ ϕ ϕ

 − ± − − = − 
 
 

. (32) 

where 0
0k V

ω
=  there is a wave number of a natural traveling wave in the chiral medium, maxϕ  - a peak 

value of potential 0ϕ ϕ− , 0X  - coordinate of the chiral element center, and accordingly a maximum 
(center) of a wave impulse, 0t  - a time of achievement of this maximum. The sign a minus concerns to 
a wave spreading from left to right, and sign plus from right to left. 

Growth of potential above chiral inclusions, fig. 2, is caused by proportionality of the chiral inclusions 
reactance their inductivities 0 ~ Li iX Lϕ ϕ ω− = . 

From the analysis of both curves it is possible to conclude that the top curve, fig. 2, concern to often 
enough inclusions of the chiral elements in a plate, and bottom to more rare. Therefore into the solution 
(32) to enter a chiral parameter it is irrational. 

Obviously for the nonlinear equations (25) or (26) there should be a multiwave solution. Multiwave 
solutions are found for very much limited circle of the nonlinear wave equations [16, 17]. The multiwave 
solution should depend on concentration of the chiral elements in a plate. Only with its help it is 
possible to understand under what conditions it is possible is proved to enter the chiral parameter, i.e. 
to understand borders of the material equations (1) - (4) applicability. 

The equation (25) supposes the multiwave solution as: 

 
( ) ( )( )20 0 0 0

0 max
1
exp

2

N n n

n

k X X t tω
nnn 

=

 − − − = + − 
 
 

∑ , (33) 

where N there are quantity of the waves-impulses kept within a length l of a plate, fig. 2, equal to 
number of the chiral elements, n - current number of an impulse, 0nX  - coordinates of waves-impulses 
maxima, 0nt  - times of these maxima achievement. 

Substituting (33) in (25) we shall find: 

 
222

2 2
02

1 1

N N

n n
n n

V
tX

nn n ω n
= =

    ∂ ∂
+ =      ∂∂     

∑ ∑ . (34) 

where it is designated: 

 
( ) ( )( )20 0 0 0exp

2
n n

n

k X X t tω
n

 − − − = − 
 
 

. (35) 

Finding the derivatives on coordinate X: 
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( ) ( )( )

( ) ( )( )

2 2 2 2
0 0 0 0 0 02

1

22 2
0 0 0 0 0 0

1 1

N

n n n n
n

N N

n n n n
n n

k X X t t k k
X

k k X X t t k

n n ω n

n ω n

=

= =

∂  = − − − + = 
 ∂

= − − − +

∑

∑ ∑
, (36) 

and on time t: 

 ( ) ( )( )0 0 0 0 0
1

N

n n n
n

k X X t t
t
n ω n ω

=

∂
= − − − −

∂ ∑ , (37) 

we substitute (36) and (37) in the equation (34) and taking into account 0 0k V ω=  we have: 

 
( ) ( )( )

( ) ( )( )

2

0 0 0 0
1 1 1

2 2

0 0 0 0
1 1

N N N

n n n n n
n n n

N N

n n n n
n n

k X X t t

k X X t t

n ω nn

nn  ω

= = =

= =

 
− − − + = 

 

   
= + − − −   
   

∑ ∑ ∑

∑ ∑
. (38) 

Reducing in the left and right parts (38) the identical addends 
2

1

N

n
n

n
=

 
 
 
∑  we shall find: 

 
( ) ( )( )

( ) ( )( )

2

0 0 0 0
1 1

2

0 0 0 0
1

N N

n n n n
n n

N

n n n
n

k X X t t

k X X t t

nn  ω

n ω

= =

=

− − − =

 
= − − − 
 

∑ ∑

∑
, (39) 

Let's consider two one after the other going the identical impulses 1, 2n = . Writing down for this 
case the formula (39) we shall find: 

 
( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )( )

2 2

1 2 1 0 01 0 01 2 0 02 0 02

2

1 0 01 0 01 2 0 02 0 02

k X X t t k X X t t

k X X t t k X X t t

ϕ ϕ ϕ ω ϕ ω

ϕ ω ϕ ω

 + − − − + − − − = 
 

= − − − + − − −
. (40) 

Transforming the formula (40) we shall receive: 
 ( ) ( )0 02 01 0 02 01 0k X X t tω− − − = . (41) 

The formula (41) shows that distance between chiral elements ( )02 01X Xδ = − , fig. 2, an 

electromagnetic impulse propagates in time ( )02 01t t−  with a speed 0

0

V
k
ω

= . The size 1
δ

 characterizes 

linear concentration of the chiral elements in a plate. 

Using in (39) 0 0 0
0

0

n n
n

X k X
t

V ω
= = , we receive that expressions in brackets 

( ) ( )( ) ( ) ( )( )2 2

0 0 0 0 0 0n nk X X t t k X tω ω− − − = −  do not depend from n they can be taken out for a 
symbol of the sum and to reduce. In result (39) turns to identity. 

Hence (33) is the multiwave solution of the nonlinear equation (25). 
The most simple kind the multiwave solution (33) has in occasion of identical distance between all 

impulses and accordingly between of the chiral elements. In this case coordinates of maxima of impulses 

are 0nX nδ= , and times of achievement of maxima 0 0 0
0

0 0

n
n

k X k n
t

δ
ω ω

= = . 

On fig. 3 for an illustration the some impulses following one after another plotted under the formula 
(33) are shown under conditions of the dimensionless sizes: 0V =  - absence of dependence on time (the 
figure fixed in time) 0 0ϕ = , max 1ϕ = , 0 2k = , 4δ = . 
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Figure 3. The impulses following one after another in the multiwave solution 

Thus the formula (33) under condition of uniform distribution of identical impulses is the multiwave 
periodic solution of the nonlinear equation (25). 

4.2  The Solution as Standing Waves 

Let's consider in more detail another kind of the wave arising on single-row chiral plate at falling on it 
of an electromagnetic wave. 

Standing waves are formed in linear systems as a result of superposition (interference) of the direct 
and reflected traveling waves more often. However it is known that standing waves can arise in 
nonlinear systems [18]. Many physical processes have essentially nonlinear character and process of 
standing waves occurrence in such systems is nontrivial. We shall examine an opportunity of standing 
waves occurrence in researched chiral medium. 

The nonlinear equations (25) and (26) can be solved by a method of the Fourier variables division [19]. 
We search the solution of the equation (25) as: 
 ( ) ( )0 X T tϕ ϕ ϕ− = . (42) 

where ( )Xϕ  there is function only coordinates X, ( )T t  - a function only time t. 
Having substituted (42) in (25) we shall find: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
22

2 2 2 2 2
02

X T t
V X T t X X T t

tX

ϕ
ϕ ϕ ϕ ω

 ∂ ∂
 = −
 ∂∂  

. (43) 

Let's divide both parts of the equation on ( ) ( )2 2X T tϕ . In result we shall receive: 

 
( )

( )
( )

( ) 22
2 2 2

02

1 1X T t
V

tXX T t

ϕ
ω α

ϕ

 ∂ ∂
 + = = −
 ∂∂  

. (44) 

where α  there is a constant. 
The equation (44) breaks up to two independent equations. The equation dependent on X looks like: 

 
( ) ( )

2 2
2
02 2

0
X

k X
X V

ϕ α ϕ
∂  

+ + =  ∂  
. (45) 

Comparing (45) and (27) we notice that 
2

2 2
0 2Sk k

V
α

= + . Hence 
2

2
2

k
V
α

= , and hence α ω= . 

The solution of the equation (45) we shall write down as: 
 ( ) ( ) ( )0 exp SX ik Xϕ ϕ= . (46) 

where ( )0ϕ  there is value of function ( )Xϕ  in the beginning of coordinates. 
The second equation of equality (44) looks like: 
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( ) ( )

T t
i T t

t
ω

∂
=

∂
. (47) 

Solving this equation we shall find: 
 ( ) ( ) ( )0 expT t T i tω= , (48) 

where ( )0T  there is initial value of function ( )T t . 
Using (42), (46) and (48) we shall find the solution of the equation (25): 

 ( ) ( )0 exp expA Si t ik Xϕ ϕ ϕ ω− = , (49) 

where it is designated ( ) ( )0 0A Tϕ ϕ=  - a peak value of potential 0ϕ ϕ−  on a plate. 
The function 0ϕ ϕ−  should not have imaginary addends, the potential is real size. Use an exponents 

with imaginary parameters is entered for convenience of transformations. Really in these exponents it is 
necessary to take into account only real items. Therefore the formula (49) describes the solution of the 
equation (25) as standing waves: 

 0
2cos cos cos cosA S A

Xt k X t πϕ ϕ ϕ ω ϕ ω
δ

− = = , (50) 

where Aϕ  there is a peak value of standing waves, δ  - length of a wave. 

Condition of the nodes occurrence in a standing wave ( )ns 2 1
4

X n δ
= ± + , where 0, 1, 2, ...n = . 

On the ends of the single-row chiral plate, fig. 2, should be nodes of a standing wave. If excitation of a 
wave occurs in the center of a plate the number of the maximal distant node from a center of a plate 

can be found under the formula ( )max2 1
2 4
l n δ

± = ± +  or max
1
2

ln
δ
 

= − 
 

. 

It is necessary to note that running waves ( )0 cos
2
A

Sk X t
ϕ

ϕ ϕ ω− = ±  with account 
2 2

2 0
2Sk V

ω ω+
=  

are not the solution of the equation (25) therefore the formula (50) from the physical point of view 
cannot be presented as a sum of the direct, and reflected from borders plate waves though mathematical 
this procedure is simple for making. It is consequence of the equation (25) nonlinearity. 

It is interesting to track graphically a transition of the multiwave solution (33) in the solution as 
standing waves (50). This transition is carried out at rapprochement of impulses, fig. 2, 3, i.e. at 
reduction of size δ . 

On fig. 4 the two curves are shown. Curve 1 is plotted under the formula (33) under conditions: 
0V = , 0 0ϕ = , max 1ϕ = , 0 2k = , 2δ =  for 8N =  impulses. Curve 2 is plotted (dotted line) under 

the formula (50) under conditions 0 0,65ϕ =  and cos 0,38A tϕ ω =  for some moment of time t. 

 

Figure 4. Transition of the multiwave solution in the solution as a standing wave: 1 - the multiwave solution, 2 - a 
standing wave 
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5   Conclusion 

Distribution of potential to a plate from a metamaterial with inductive chiral inclusions is investigated 
as with use of the material equations together with the Maxwell’s equations, and on the basis of a 
detailed method of calculation of the chiral elements and an electromagnetic wave interaction. 
Comparison of two approaches has allowed to find out that introduction of the chiral parameter is 
correct only at enough high concentration of the chiral inclusions. On the basis of comparison of two 
methods results the frequency dependence of chiral parameter is found. At use of a detailed method of 
calculation the nonlinear equation for the potential having solutions as standing waves and solitary 
waves is received. Traveling waves are not the solution of this equation. At reduction of distance 
between chiral elements the process of transition of the multiwave solution of the nonlinear equation in 
the solution as a standing wave is investigated. 
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