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1 Introduction

The Raychaudhuri equation [1] is an entirely geometrical equation, in the sense that it provides a
description of the evolution or flow of congruences of timelike or lightlike (null) curves, these been
geodesics or with an acceleration term, in a given spacetime, that is, a differentiable manifold equipped
with a pseudo-Riemannian metric gµν inducing the Levi-Civita connection Γµνρ. The characteristic elements
of the congruences are the expansion scalar Θ and the shear and rotation tensors, respectively σµν and
ωµν , for geodesic curves, plus an acceleration term aµ in the non-geodesic case. The information about the
geometry of the spacetime lies in the Riemann tensor Rµνρσ determined by the metric. The connection
with physics appears due to the relation of the Ricci tensor Rµν = Rαµαν with the energy-momentum
tensor Tµν through the Einstein equation Rµν − 1

2gµνR− Λgµν = 8πTµν , where R is the curvature scalar
Rµµ and Λ is the cosmological constant.

For geodesics, the simplest form of the Raychaudhuri equation is when they are affinely parametrized,
that is with a parameter λ uniquely determined up to an affine transformation λ→ λ′ = aλ+ d, a, d ∈ R,
a 6= 0.

What constitutes the crucial point of the present analysis, is that with the transformation indicated
in equation (7) below (Section 3) [2,3], the Raychaudhuri equation reduces to a 1-dimensional harmonic
oscillator equation with a “time” (λ)-dependent frequency Ω, which, being a second order homogeneous
ordinary differential equation for the function F (λ), can be integrated with a suitable domain of definition
of the parameter and adequate boundary conditions. Since in general Ω is not a periodic function of its
argument, (8) is not a Hill equation [4], but is known as a “Hill-type” equation.

Once a λ-dependent Lagrangian leading to the oscillator equation is defined, a Feynman path integral
[5,6] leads to a propagator K(F ′′, λ′′;F ′, λ′) from given initial (F ′, λ′) to final (F ′′, λ′′) values of the affine
parameter and of the function F representing the expansion (Section 4). The propagator is essentially
a quantum object since it is obtained by a functional integration over all fluctuations of the expansion
-represented by F - along its classical evolution; so K is nothing but the quantum description of the
congruence flow. In contrast with the classical case where the expansions diverge at a caustic or at a
singularity of the metric (e.g. at the future and past singularities r± ≡ 0|± in the Schwarzschild-Kruskal-
Szekeres black hole [7,8]), the associated propagators remain finite. The motivation of this “quantization”
of the Raychaudhuri equation is to explore the idea that the non spacelike geodesics are the fundamental
quantities of gravity theory, perhaps even more fundamental than the metric itself [9]. This conception is
related to the loop formulation of quantum gravity based on the ideas that forces are described by lines (e.g.
Wilson loops) and the notion of background independence (spacetime/gravitational field identification)
[10]. For a recent introductory review of other approaches to quantum gravity see, e.g., Ref. [11].

In Section 5 we apply the above general construction and obtain the propagators of simple but non-
trivial ingoing and outgoing radial timelike geodesic congruences outside the horizon of the Schwarzschild
black hole (Subsection 5.1) and of radial null ingoing and outgoing geodesics respectively in the black
hole and white hole regions of this metric (Subsection 5.2). Section 6 is devoted to final comments.
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2 Raychaudhuri Equation

Let v = (vµ), vµ = dxµ

dλ , be the vector field tangent to an affinely parametrized timelike (T.L.) or null (N)
geodesic congruence (λ is the affine parameter) in a 4-dimensional spacetime with local coordinates xµ,
µ = 0, 1, 2, 3, metric gµν , Levi-Civita connection Γµνρ = 1

2g
µσ(∂νgρσ + ∂ρgνσ − ∂σgνρ), curvature tensor

Rρµσν = Γ ρµν,σ − Γ ρµσ,ν + ΓλµνΓ
ρ
λσ − ΓλµσΓ

ρ
λν , Ricci tensor Rµν = Rρµρν , and covariant derivative D = (Dµ).

v obeys the equation
v ·D(vµ) = vνDν(vµ) = vν(∂νvµ + Γµνρv

ρ) = 0 (1)

with normalization v2 = gµνv
µvν = +1 (0) in the T.L. (N) case (we use the signature (+,-,-,-)). The

expansion of the congruence, that is, the fractional rate of change of the cross-sectional volume (area) to
the congruence in the T.L. (N) case, is the scalar

Θ = D · v = 1√
−g

∂µ(
√
−gvµ), (2)

where g = det(gµν). Through pure geometrical identities, Θ can be shown to obey the Raychaudhuri
equation [1,2] (a Riccati equation)

dΘ

dλ
= − 1

n
Θ2 − σµνσµν + ωµνω

µν −Rµνvµvν (3)

i.e. Θ̇ = − 1
nΘ

2 − σ2 + ω2 −Ric(v, v), where n = 3 (2) in the T.L. (N) case; σµν (shear, which measures
the change in shape of the congruence without modification of its volume in the T.L. case, or of its area
in the N case) and ωµν (rotation) are, respectively, the traceless symmetric and antisymmetric parts of
the tensor

Bµν = Dνvµ, (4)

so that Θ = Bµ;µ. One has the decomposition

Bµν = σµν + ωµν + 1
n
Θhµν , (5)

where hµν is the transverse metric (part of gµν orthogonal to v) given by gµν − vµvν in the T.L. case and
gµν − (vµnν + vνnµ) in the N case (nµ is a null vector satisfying v · n = +1).

(3) is a purely geometrical equation; its physical meaning [12] only comes after relating the Ricci
tensor to the energy-momentum tensor Tµν through the Einstein equation

Rµν −
1
2gµνR− Λgµν = 8πTµν , (6)

where R = Rµµ and Λ is the cosmological constant; finally, all the terms in (3) depend on λ through the
xµ’s. In the vacuum, Tµν = Λ = 0, implying Rµν = 0.

(Units: In the geometrical system, G = c = 1, so if [λ] = [L], then [Θ] = [L]−1, [σ]2 = [ω]2 = [Rµν ] =
[L]−2, and [v] = [L]0.)

3 Harmonic Oscillator with Time Dependent Frequency

In terms of the function F (λ) defined by [2,3]

Θ(λ) = n
Ḟ (λ)
F (λ) , (7)

the Raychoudhuri equation (3) becomes

F̈ (λ) + (Ω(λ))2F (λ) = 0 (8)
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with
Ω2 = 1

n
(σ2 − ω2 +Rµνv

µvν), (9)

which is nothing but the equation of a classical 1-dimensional harmonic oscillator with λ (“time”)-
dependent frequency Ω. After Hill [4], (8) is known as a “Hill-type” equation. If at λ = λ0 the congruence
converges to a point i.e. Θ(λ) has a caustic: Θ(λ)→ −∞ as λ→ λ0, then λ0 must be a zero of F (λ) if
Ḟ (λ0) is finite.

(8) is the Euler-Lagrange equation of the “time”-dependent Lagrangian

L(F, Ḟ , λ) = 1
2(Ḟ 2 −Ω2F 2). (10)

For a suitable domain of definition of λ, (8) admits a solution F̄ (λ) subject to the boundary conditions
F ′ = F̄ (λ′) and F ′′ = F̄ (λ′′) with, e.g., λ′ < λ′′.

(Units: [F ]=[L]1/2 since [action]=[
∫
dλL] = [L][L] = [L]0.)

4 Path Integrals and Time-Dependent Quadratic Lagrangians

It is well known [5,6] that a Lagrangian of the form

L(x, ẋ, t) = 1
2((ẋ(t))2 − b(t)(x(t))2) (11)

has associated with it a perfectly defined propagator K(x′′, t′′;x′, t′) from the quantum state |x′, t′ > to
the quantum state |x′′, t′′ > given by the path integral∫ x(t′′)=x′′

x(t′)=x′
Dx(t)ei

∫ t′′

t′
dtL(x,ẋ,t)

, (12)

(~ = 1) where, formally, ∫ x(t′′)=x′′

x(t′)=x′
Dx(t)... =

∏
t∈(t′,t′′)

∫ +∞

−∞
dx(t)... . (13)

The result is
K(x′′, t′′;x′, t′) = (2πif(t′′, t′))−1/2eiS[x̄], (14)

where x̄(t) is the solution of
ẍ(t) + b(t)x(t) = 0 (15)

with x(t′′) = x′′ and x(t′) = x′,

S[x̄] =
∫ t′′

t′
dtL(x̄(t), ˙̄x(t), t), (16)

and f(t, t′) is the solution of
∂2f(t, t′)
∂t2

+ b(t)f(t, t′) = 0 (17)

with f(t′, t′) = 0 and ∂f(t,t′)
∂t |t=t′ = 0.

Since (10) and (11) (and therefore (8) and (15)) have the same form, then

K(F ′′, λ′′;F ′, λ′) =
∫ F (λ′′)=F ′′

F (λ′)=F ′
DF (λ)ei

∫ λ′′

λ′
dλL(F,Ḟ ,λ)

= (
∏

λ∈(λ′,λ′′)

∫ +∞

−∞
dF (λ))ei

∫ λ′′

λ′
dλL(F,Ḟ ,λ) = (2πif(λ′′, λ′))−1/2eiS[F̄ ]

(18)
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with

S[F̄ ] =
∫ λ′′

λ′
dλL(F̄ (λ), ˙̄F (λ), λ) (19)

and f(λ, λ′) solution of (17) with t’s replaced by λ’s, is a Feynman propagator and therefore a quantum
object describing the flow of the geodesic congruence from λ = λ′ to λ = λ′′. To the pairs (F ′′, λ′′) and
(F ′, λ′) should correspond “quantum states” |F ′′, λ′′ > and |F ′, λ′ >, belonging to the Hilbert space of a
quantum theory of gravity, e.g. in loop quantum gravity as superpositions of an orthonormal basis of spin
network states [10]. This point should be a matter of further research.

5 Examples

5.1 Example 1

As a first example of a quantum propagator associated to a geodesic flow, we consider the outgoing (+
sign) and ingoing (- sign) timelike radial geodesic congruences given by equation (2) in Ref. [2] in the
unique spherically symmetric asymptotically flat vacuum (Tµν = Λ = 0) solution of (6), namely the
Schwarzschild spacetime, with metric

ds2 = fdt2 − f−1dr2 − r2dΩ2, dΩ2 = dθ2 + sin2θdϕ2, (20)

gtt = f = 1− 2M
r
, grr = −f−1, gθθ = −r2, gϕ,ϕ = −r2sin2θ, xµ = (t, r, θ, ϕ),

t ∈ (−∞,+∞), r > 2M, θ ∈ [0, π], ϕ ∈ [0, 2π).
(21)

The tangent vector fields to the geodesics are given by

v± = vµ±∂µ = vt±∂t + vr±∂r = 1
f
∂t ±

√
2M
r
∂r (22)

i.e. vt± = 1
f , v

r
± = ±

√
2M
r , vθ± = vϕ± = 0.

It is easily verified that the geodesics are affinely parametrized:

v± ·D(vµ±) = 0 (23)

and hypersurface orthogonal: in fact,

v±t = gttv
t
± = ∂tΦ±(t, r), v±r = grrv

r
± = ∂rΦ±(t, r) (24)

with hypersurfaces defined by

Φ(t, r)± = ∓
∫ r

dr′

√
2M
r′

1− 2M
r′

+ t = ∓4M(1
z
− 1

2 ln(1 + z

1− z )) + t = const., (25)

where we used 2.149 and 2.172 of Ref. [13], and z =
√

2M
r . As a consequence, the geodesics rotation

vanishes [15]:
ω±µν = 0. (26)

From the non-vanishing components of the shear tensors, given in equations (4) and (5) in Ref. [2], and
using the inverse metric gµν = diag(f−1,−f,−r−2,−r−2sin−2θ), a straightforward calculation leads to

σ2
± = σ±µνσ

µν
± = 3M

r3 . (27)

Equations (2) and (22) lead to the expansions

Θ± = ±3
2

√
2M
r3 (28)
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and therefore to the fulfillment of the Raychoudhuri equations

dΘ±
dλ±

+ 1
3Θ

2
± + σ2

± = 0 (29)

with affine parameters obeying
dr

dλ±
= ±

√
2M
r

= vr±. (30)

Up to an additive constant, one obtains

λ± = ±1
3

√
2r3

M
, (31)

with
λ+ ∈ (4M

3 ,+∞) (32)

and
λ− ∈ (−∞,−4M

3 ). (33)

In terms of λ±,
Θ± = 1

λ±
,
dΘ±
dλ±

= − 1
λ2
±
, σ2
± = 2

3λ2
±
, (34)

which fulfills (29). Also, for the flow of both the future directed outgoing (from λ′+ to λ′′+) and ingoing
(from λ′− to λ′′−) congruences, λ′± ≤ λ± ≤ λ′′±. In particular, it can be easily seen that if Θ− is negative
at (λ−)0, the ingoing congruence converges to a point in a finite interval of the affine parameter (focusing
theorem) i.e. it has a caustic: from the fact that σ2

− = 2
3λ2
−
> 0, dΘ−dλ−

< − 1
3Θ

2
− which implies

∫ Θ−
(Θ−)0

dΘ′−
(Θ′−)2 =

− 1
Θ−(λ−) + 1

(Θ−)0
< 1

3 (λ−− (λ−)0) where (Θ−)0 = Θ−((λ−)0). Then 1
Θ−(λ−) > −

1
|(Θ−)0| +

1
3 (λ−− (λ−)0)

since (Θ−)0 < 0. So, if (λ− − (λ−)0)→ ( 3
|(Θ−)0| )−, then

1
Θ−(λ−) → 0− ⇐⇒ Θ−(λ−)→ −∞. (35)

From vt± = dt
dλ±

= 1
1− 2M

r

= ±
√

2M
r ( dtdr )± one obtains

( dt
dr

)± = ± 1√
2M
r (1− 2M

r )
(36)

from which it follows

(t(r, r0))± = ±
∫ r

r0

dr′

(2M/r′)1/2 − (2M/r′)3/2

= ±4M(1
3(z−3/2 − z−3/2

0 ) + (z−1/2 − z−1/2
0 ))− 1

2 ln( (1 + z)(1− z0)
(1− z)(1 + z0) )),

(37)

where again we used 2.149 and 2.172 of Ref. [13], 2M < r0, r, r0 < r (outgoing case), r < r0 (ingoing
case), z0 =

√
2M
r0

, and z =
√

2M
r .

Defining the functions F±(λ±) through

Θ±(λ±) = 3 Ḟ±(λ±)
F±(λ±) (38)

the Raychoudhuri equations (29) become

F̈±(λ±) +Ω2
±(λ±)F±(λ±) = 0 (39)
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with affine parameter-dependent square frequency

Ω2
±(λ±) = 2

9λ2
±
. (40)

Since λ2
± ∈ ( 16

9 M
2,+∞), then Ω± ∈ (0, 1

2
√

2M ).
Using the series (or Frobenius) expansion method for obtaining solutions of linear second order

homogeneous ordinary differential equations [14], the solutions F̄±(λ±) of (39) with the boundary
conditions

F ′± = F̄±(λ′±), F ′′± = F̄±(λ′′±) (41)

are

F̄±(λ±) =
(F ′±λ

′′ 1/3
± − F ′′±λ

′ 1/3
± )λ2/3

± + (F ′′±λ
′ 2/3
± − F ′±λ

′′ 2/3
± )λ1/3

±
(λ′′±λ′±)1/3((λ′±)1/3 − (λ′′±)1/3)

. (42)

The associated quantum propagators from the “quantum states” |F ′±, λ′± > to the “quantum states”
|F ′′±, λ′′± > are obtained from the results in section 4 with the replacements t → λ±, x̄(t) → F̄±(λ±),
a(t)→ Ω2

±(λ±), and by explicitly solving (17) with the above changes. The result is:

K±(F ′′±, λ′′±;F ′±, λ′±) = (2πif(λ′′±, λ′±))−1/2eiS[F̄±], (43)

with

S[F̄±] = 1
2

∫ λ′′±

λ′±

dλ±(( ˙̄F±(λ±))2 − 2
9λ2
±

(F̄±(λ±))2) (44)

given by

(F ′±)2λ′′±(1− 1
2 ((λ′±/λ′′±)1/3 + (λ′′±/λ′±)1/3))− (F ′′±)2λ′±(1− 1

2 ((λ′′±/λ′±)1/3 + (λ′±/λ′′±)1/3))
3(λ′′±λ′±)2/3((λ′±)1/3 − (λ′′±)1/3)2 , (45)

and
f(λ′′±, λ′±) = 3((

λ′±
λ′′±

)1/3 − (
λ′±
λ′′±

)2/3). (46)

In the path integrals defining K±(F ′′±, λ′′±;F ′±, λ′±), the “integration measures” for the (+) and (-) cases
are ∏

λ±∈(λ′±,λ
′′
±)

∫ +∞

−∞
dF±(λ±)... (47)

with, respectively, (λ′+, λ′′+) ⊂ ( 4M
3 ,+∞) and (λ′−, λ′′−) ⊂ (−∞,− 4M

3 ).
For the ingoing congruence, we saw in the previous subsection that if at λ′− = (λ′−)0 the expansion

(Θ−)0 is negative, then it diverges at λ′′ = (λ′−)0 + 3
|(Θ−)0| where, because of (7), F ′′− = F̄ (λ′′−) = 0.

However, in contradistinction with this divergence, according to (43), (45) and (46), the propagator from
(F ′, (λ′−)0) to (0, λ′′−) remains finite and is given by

K−(0, λ′′−;F ′−, (λ′−)0) = ei(S[F̄−])+π/4)√
6π(((λ′−)0/λ′′−)2/3 − ((λ′−)0/λ′′−)1/3)

(48)

with

S[F̄−] =
(F ′−)2λ′′−(1− 1

2 (((λ′−)0/λ
′′
−)1/3 + (λ′′−/(λ′−)0)1/3))

3(λ′′−(λ′−)0)2/3(((λ′−)0)1/3 − (λ′′−)1/3)2 . (49)

(48) gives the wave function ψ(0, λ′′−) associated to the ket |0, λ′′− >, if the wave function associated with
the ket |F ′−, (λ′−)0 > is δ(λ′− − (λ′−)0):

ψ(0, λ′′−) =
∫ −4M/3

−∞
dλ′K−(0, λ′′−;F ′−, λ′−)δ(λ′− − (λ′−)0) = K−(0, λ′′−;F ′, (λ′−)0). (50)
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5.2 Example 2

As a second example, we consider the propagators associated to radial future directed null geodesics 
in the interior of the black hole (B.H.) and white hole (W.H.) regions of the Schwarzschild-Kruskal-
Szekeres metric respectively starting at the future and past horizons H+ and H− and ending in the 
future singularity at r = 0|+ (ingoing geodesics, cases (a) and (b) in Figure 1), and starting in the past 
singularity at r = 0|− and ending in the past and future horizons H− and H+ (outgoing geodesics, cases (a) 
and (b) in Figure 2).

(a) (b)

Figure 1. Future directed null ingoing geodesics propagators: (a): H+ → 0|+, (b): H− →= |+

(a) (b)

Figure 2. Future directed null outgoing geodesics propagators: (a): 0|− → H−, (b): 0|− → H+

As is well known [15,16], the expansions are given by

Θain = Θbin = −2
r
, r ∈ (−∞, -1/M) (51)

and
Θcout = Θdout = +2

r
, r ∈ (1/M, +∞) (52)

with vanishing rotation (ωµν = 0), shear (σµν = 0), and Ricci tensor (Rµν=0). The afine parameters are
λ = ∓r, respectively for the ingoing and the outgoing cases, and the Raychaudhuri equations (3) are

dΘ

dλ
= −1

2Θ
2 (53)
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for Θxin, x = a, b; λ = −r, and Θyout, y = c, d; λ = +r. Defining F as in (7) with n = 2, since Ω = 0 one
obtains

F̈ (λ) = 0 (54)

(free non relativistic particle!) with solution

F (λ) = Aλ+B. (55)

Since as λ = ∓r → 0|±, Θxin → −∞ and Θyout → +∞, the corresponding F ′s→ 0 and so B = 0 for all
cases. Then

F xin(r) = F xin2 − F xin1
r2 − r1

r, F yout(r) = F yout2 − F
y
out1

r2 − r1
r (56)

with F xin2, . . . , F
y
out1 constants. (As in the previous example, [F ] = [L]1/2.) For the ingoing cases (Figure

1), r2 = 0|+, F xin2 = 0 (since Θxin(0|+) = −∞)) and r1 = 2M , while for the outgoing cases (Figure 2),
r1 = 0|+, F yin1 = 0 (since Θyout(0|−) = +∞)) and r2 = 2M .

The Lagrangians L = 1
2 Ḟ

2 and actions S =
∫
dλL lead to the Feynman propagatorsKx

in(F xin2, r2;F xin1, r1)
and

Ky
out(F

y
out2, r2;F yout1, r1) given by

Kx
in(H± B.H.−→ 0|+) = Kx

in(0, 0|+;F xin1, 2M) = e
i
4 (π−(Fxin1)2/M)
√

4πM
(57)

and

Ky
out(0|−

W.H.−→ H∓) = Ky
out(F

y
out2, 2M ; 0, 0|−) = e−

i
4 (π−(Fyout2)2/M)
√

4πM
(58)

which are finite.

6 Final Comments

We have shown that to any affinely parametrized geodesic congruence described by the Raychaudhuri
equation, it can be assigned a Feynman propagator describing its flow. In particular, at the end of
Subsection 5.2 we showed that, for the example defined in Subsection 5.1, the propagator remains finite
at a caustic, where the classical expansion diverges. This result could be valid in general, and is an
indication that the introduction of a quantum description should smooth or even disappear the divergences
(singularities) of the classical theory. (An example is the disappearance of the Schwarzschild black hole
singularity in the context of loop quantum gravity [17].)

In the non-geodesic case (timelike or null), v ·D(vµ) 6= 0 and equation (3) becomes

dΘ

dλ
= − 1

n
Θ2 − σµνσµν + ωµνω

µν −Rµνvµvν +D · a (59)

where D · a = aµ;µ and

aµ(λ) = vνDνv
µ = dxν

dλ
Dνv

µ ≡ Dvµ

dλ
(60)

is an acceleration term [2,18]. The introduction of the function F (λ) as in (7) leads to an equation
analogous to (8), namely

F̈ (λ) +Ω′
2(λ)F (λ) = 0 (61)

with a modified frequency
Ω′

2 = 1
n

(σ2 − ω2 +Rµνv
µvν)− aµ;µ, (62)

which again defines an oscillator with λ-time dependent frequency. Then to an arbitrary congruence of
curves xµ(λ), geodesic or non-geodesic, with enough differentiability in a spacetime defined by gµν , Rµν ,
etc., can be associated, in principle, a quantum propagator along its flow.
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As a final remark, we wish to mention that closely related to the Raychaudhuri equation is the geodesic
deviation equation (G.D.E.) which is the Jacobi equation for the deviation vector ξµ = ∂xµ

∂s (Jacobi
field) measuring the separation between geodesics in the congruence, each geodesic labelled by the real
parameter s (in this case xµ = xµ(λ, s)):

D2

dλ2 ξ
µ +Rµλσρv

λvρξσ = 0 (63)

( Ddλ ≡ v ·D), where D2

dλ2 ξ
µ ≡ Aµ is the relative acceleration between geodesics (tidal acceleration). It can

be easily verified that coordinates can be chosen such that v · ξ = 0, and that it holds v ·Dξµ = Bµν ξ
ν ,

from which (63) is derived. Thus, it is the covariant gradient of the geodesic velocity vµ;ν = Bµν (eq.(4))
the basic quantity from which both the Raychaudhuri equation and the G.D.E. emerge. Finally, it is clear
that at a caustic ξα vanishes, and that in flat spacetime Aµ = 0 i.e. tidal forces are pure geometrical
phenomena.
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